

Mechanical by separate key actuators

Mechanical and interlock by separate key manual unlocking

Mechanical and interlock
by separate key
Solenoid locking / unlocking

Contact-free, by coded magnet

By specific key	By coded magnetic key

Reinforced by Hall effect technology

Architecture 1	-		
Architecture 2	-	-	
Architecture 3	Architecture 4	Architecture 6	
	Architecture 5	Architecture 7	

, XPSAXE, XPSMP, XPSMC	XPSAC, XPSVNE	XPSDMB, XPSDME

All heavy industrial machines, with quick rundown time (1)
Industrial format with or without locking
Metal with 1 cable entry, without locking
Metal with 1 cable entry, with manual locking/unlocking

Metal
Without locking of actuator.

Manual locking and unlocking of actuator by pushbutton or key operated lock (can be mounted on left or right-hand side of switch head).

EN/IEC 60947-5-1, EN/ISO 13849-1, EN/IEC 62061, UL 508, CSA C22-2 n ${ }^{\circ} 14$ and JIS C4520

EN/IEC 60204-1, EN/ISO 14119

UL, CSA

$40 \times 113.5 \times 44$	$52 \times 113.5 \times 44$
30×60	

Turret head: 8 positions for insertion of actuator.

Presentation, characteristics

Safety detection solutions
Key operated switches
Metal, turret head, types XCSA, XCSB and XCSC
Plastic, double insulated, turret head, types XCSMP or XCSPA and XCSTA

Metal, types XCSA, XCSB, XCSC

Key operated switches with or without locking of the actuator

Page 48

Plastic, types XCSMP, XCSPA XCSTA

Key operated switches with or without locking of the actuator

Page 40

Environment characteristics			
Key operated switch type		$\begin{aligned} & \text { XCSA, XCSB, XCSC } \\ & \text { (metal) } \end{aligned}$	XCSMP, XCSPA, XCSTA (plastic)
Conformity to standards	Products	EN/IEC 60947-5-1, UL 508, CSA C22-2 $\mathrm{n}^{\circ} 14$	
	Machine assemblies	EN/IEC 60204-1, EN/ISO 14119	
Product certifications		UL, CSA	UL, CSA (cULus for XCSMP)
Maximum safety level (1)		PL=e, category 4 conforming to EN/ISO 13849-1 and SIL CL3 conforming to EN/IEC 62061	
Reliability data $\mathrm{B}_{10 \mathrm{~d}}$		5000000 (value given for a service life of 20 years, limited by mechanical or contact wear)	
Protective treatment		Standard version: "TC"	
Ambient air temperature	For operation	$-25 . . .+70^{\circ} \mathrm{C}$	
	For storage	$-40 \ldots+70^{\circ} \mathrm{C}\left(-25 \ldots+80^{\circ} \mathrm{C}\right.$ for XCSMP)	
Vibration resistance		$5 \mathrm{gn}(10 \ldots 500 \mathrm{~Hz})$ conforming to EN/IEC 60068-2-6 (6 gn ($10 \ldots 55 \mathrm{~Hz}$) for XCSMP)	
Shock resistance		$10 \mathrm{gn} \mathrm{(duration} 11 \mathrm{~ms}$) conforming to EN/IEC 60068-2-27 (50 gn (duration 11 ms) for XCSMP)	
Electric shock protection		Class 1 conforming to EN/IEC 60536	Class 2 conforming to EN/IEC 60536
Degree of protection		IP 67 conforming to EN/IEC 60529 and EN/IEC 60947-5-1 (2)	
Cable entry		1 entry tapped ISO M20 $\times 1.5$ (clamping capacity 7 to 13 mm) or tapped for $\mathrm{n}^{\circ} 13$ (Pg 13.5) cable gland conforming to NFC 68-300 (clamping capacity 9 to 12 mm) or for 1/2" NPT (USAS B2-1) conduit	1 entry (XCSPA) or 2 entries (XCSTA) tapped for ISO M16 $\times 1.5$ cable gland (clamping capacity 4.5 to 10 mm) or for $\mathrm{n}^{\circ} 11$ (Pg 11) cable gland, or tapped $1 / 2$ " NPT, or for $1 / 2^{\prime \prime}$ NPT (USAS B2-1) conduit using metal adaptor DE9RA1012) for XCSTA (other entry fitted with blanking plug).
Connecting cable		-	Pre-cabled, either $4 \times 0.5 \mathrm{~mm}^{2}$ or $6 \times 0.5 \mathrm{~mm}^{2}$ (XCSMP)
Materials		XCSA/B/C Zamak case	XCSMP/PA/TA Polyamide PA66 fibreglass impregnated case
		Actuators (all types): steel XC60, surface treated	
		(1) Using an appropriate and correctly connected control system. (2) Live parts of these switches are protected against the penetration of dust and water. However, when installing take all necessary precautions to prevent the penetration of solid bodies, or liquids with a high dust content, into the actuator aperture. Not recommended for use in saline atmospheres.	

Safety detection solutions
Key operated switches
Metal, turret head, types XCSA, XCS and XCSC
Plastic, double insulated, turret head,
types XCSMP or XCSPA and XCSTA

Contact block characteristics

Rated operational characteristics	2 and 3 contact, slow break	XCSA, XCSB, XCSC, XCSTA, XCSPA: $\sim A C-15, A 300: ~ U e=240 \mathrm{~V}$, le $=3 \mathrm{~A}$ or $\mathrm{Ue}=120 \mathrm{~V}, \mathrm{le}=6 \mathrm{~A}$ XCSMP: ~AC-15, C300: $\mathrm{Ue}=240 \mathrm{~V}$, le $=0.75 \mathrm{~A}$ or $\mathrm{Ue}=120 \mathrm{~V}$, le $=1.5 \mathrm{~A}$ All models: =- DC-13, Q300: $\mathrm{Ue}=250 \mathrm{~V}$, $\mathrm{le}=0.27 \mathrm{~A}$ or $\mathrm{Ue}=125 \mathrm{~V}$, $\mathrm{le}=0.55 \mathrm{~A}$ conforming to EN/IEC 60947-5-1
	2 contact, snap action	XCSPA: ~AC-15, A300: $\mathrm{Ue}=240 \mathrm{~V}$, le $=3 \mathrm{~A}$; Ithe $=10 \mathrm{~A}$.-. DC-13, Q300: $\mathrm{Ue}=250 \mathrm{~V}$, le $=0.27 \mathrm{~A}$ or $\mathrm{Ue}=125 \mathrm{~V}$, le $=0.55 \mathrm{~A}$ conforming to $\mathrm{EN} / \mathrm{IEC}$ 60947-5-1
	3 contact, snap action	=- DC-13, R300: $\mathrm{Ue}=250 \mathrm{~V}$, le $=0.1 \mathrm{~A}$ or $\mathrm{Ue}=125 \mathrm{~V}$, le $=0.55 \mathrm{~A}$ conforming to EN/IEC 60947-5-1
Conventional thermal current in enclosure		XCSA, XCSB, XCSC, XCSPA (2 \& 3 slow break contact and 2 snap action contact versions) XCSPA (3 snap action contact version): Ithe $=6 \mathrm{~A}$ XCSMP: Ithe $=2.5 \mathrm{~A}$
Rated insulation voltage	2 and 3 contact	3 contact (XCSA, XCSB, XCSC, XCSTA), 2 contact (XCSPA), 2 and 3 contact (XCSMP): $\mathrm{Ui}=500 \mathrm{~V}$ conforming to EN/IEC 60947-1; Ui $=300 \mathrm{~V}$ conforming to UL 508, CSA C22-2 $\mathrm{n}^{\circ} 14$
	3 contact	XCSPA: $\mathrm{Ui}=400 \mathrm{~V}$ degree of pollution 3 conforming to EN/IEC 60947-1 $\mathrm{Ui}=300 \mathrm{~V}$ conforming to UL 508, CSA C22-2 $\mathrm{n}^{\circ} 14$
Rated impulse withstand voltage	2 and 3 contact	3 contact (XCSA, XCSB, XCSC, XCSTA), 2 contact (XCSPA), 2 and 3 contact (XCSMP): Uimp $=6 \mathrm{kV}$ conforming to EN/IEC 60947-5-1
	3 contact	XCSPA: Uimp $=4 \mathrm{kV}$ conforming to EN/IEC 60947-5-4
Positive operation		NC contacts with positive opening operation conforming to EN/IEC 60947-5-1, Section 3
Resistance across terminals		$\leqslant 30 \mathrm{~m} \Omega$ conforming to EN/IEC 60947-5-4
Short-circuit protection	2 and 3 contact	3 contact (XCSA, XCSB, XCSC, XCSTA), 2 contact (XCSPA), 2 and 3 contact (XCSMP): 10 A cartridge fuse type gG (gl)
	3 contact	XCSPA: 6 A cartridge fuse type gG (gl)
Connection $\quad \begin{aligned} & \text { Pre-cabl } \\ & \\ & \begin{array}{l}\text { Screw cla } \\ \text { terminal }\end{array}\end{aligned}$		$4 \times 0.5 \mathrm{~mm}^{2}$ or $6 \times 0.5 \mathrm{~mm}^{2}$ (XCSMP). PVC
	2 contact, snap action	XCSPA, XCSTA: Clamping capacity, min: $1 \times 0.34 \mathrm{~mm}^{2}$, max: $2 \times 1.5 \mathrm{~mm}^{2}$
	2 and 3 contact	3 contact (XCSA, XCSB, XCSC, XCSTA), 2 contact (XCSPA): Clamping capacity, $\mathrm{min}: 1 \times 0.5 \mathrm{~mm}^{2}$, $\max : 2 \times 1.5 \mathrm{~mm}^{2}$ with or without cable end
	3 contact	XCSPA: clamping capacity, min: $1 \times 0.34 \mathrm{~mm}^{2}$, max: $1 \times 1 \mathrm{~mm}^{2}$ or $2 \times 0.75 \mathrm{~mm}^{2}$
Electrical durability		
Conforming to EN/IEC 60947-5-1 Appendix C. Utilisation categories AC-15 and DC-13. Maximum operating rate: 3600 operating cycles/hour.		Only applicable to XCSMP: Conforming to EN/IEC 60947-5-1 Appendix C. Utilisation categories AC-15 and DC-13. Maximum operating rate: 900 operating cycles/hour.

Load factor: 0.5

For XE2S P•151 on ~ or --., NC and NO contacts simultaneously loaded to the values shown with reverse polarity.

AC supply
$50 / 60 \mathrm{~Hz} \sim$ תm inductive circuit

2 snap action contact version
AC supply
$50 / 60 \mathrm{~Hz} \sim$
m inductive circuit

Power broken in W for
5 million operating cycles.

Voltage	V	$\mathbf{2 4}$	$\mathbf{4 8}$	$\mathbf{1 2 0}$
mm	W	10	7	4

3 snap action contact version XCSPA

Voltage	V	$\mathbf{2 4}$	$\mathbf{4 8}$	$\mathbf{1 2 0}$
mm	W	13	9	7

3 slow break contact version XCSPA

DC supply ---
Power broken in W for
5 million operating cycles.

References, characteristics

Safety detection solutions

Key operated switches
Metal, turret head (1), types XCSA, XCSB and XCSC 1 cable entry

Type of switch	Without locking of actuator			With locking of actuator, manual unlocking (2)					
LED indication on opening of NC contacts	Without	1 orange LED $24 / 48 \mathrm{~V} \sim$	1 orange LED 110/ 240 V~	Without	1 orange LED 24/ $48 \mathrm{~V} \sim$	1 orange LED $110 /$ $240 \mathrm{~V} \sim$	Without	1 orange LED $24 / 48 \mathrm{~V} \sim$	1 orange LED 110/ 240 V ~
References of switches without actuator (Θ NC contact with positive opening operation) with 1 cable entry tapped ISO M20 x 1.5									
3 -pole 1 NC + 2 NO break before make, slow break (3)	XCSA502	XCSA512	XCSA522	XCSB502	XCSB512	XCSB522	xcsc502	xCSC512	XCSC522
	XCSA702	XCSA712	XCSA722	XCSB702	XCSB712	XCSB722	xCSC702	XCSC712	XCSC722
	XCSA802	-	-	XCSB802	-	-	xCSC802	-	-
Weight (kg)	0.440	0.440	0.440	0.475	0.475	0.475	0.480	0.480	0.480
References of switches without actuator (Θ NC contact with positive opening operation) with 1 cable entry tapped Pg 13.5									

To order a switch with a Pg 13.5 cable entry, replace the last number (2) by 1 in the selected reference.
Example: XCSA502 becomes XCSA501.

References of switches without actuator (Θ NC contact with positive opening operation) with 1 cable entry tapped 1/2" NPT

To order a switch with a $1 / 2$ " NPT cable entry, replace the last number (2) by $\mathbf{3}$ in the selected reference.
Example: XCSA502 becomes XCSA503.
Complementary characteristics not shown under general characteristics (page 38)

Actuation speed	Maximum: $0.5 \mathrm{~m} / \mathrm{s}$, minimum: $0.01 \mathrm{~m} / \mathrm{s}$
Resistance to forcible withdrawal of actuator	XCSB and XCSC: 1500 N
Mechanical durability	XCSA: >1 million operating cycles XCSB and XCSC: 0.6 million operating cycles
Maximum operating rate	For maximum durability: 600 operating cycles per hour
Minimum force for extraction of actuator	$\geqslant 20 \mathrm{~N}$
Cable entry	XCSA, XCSB, XCSC: 1 cable entry Entry tapped ISO M20 $\times 1.5$, clamping capacity 7 to 13 mm Materials References of actuators

(1) Head adjustable in 90° steps throughout 360°. Blanking plug for operating head slot included with switch.
(2) Unlocking by pushbutton for XCSB $\bullet \bullet \bullet$ and by key operated lock for XCSC $\bullet \bullet \bullet(2$ keys included with switch).
(3) Schematic diagrams shown represent the contact states whilst the actuator is inserted in the head of the switch.

Other versions: please consult our Customer Care Centre.

