Product data sheet
Characteristics

ATV212HD37N4
variable speed drive ATV212-37kW - 50hp 480V - 3ph - EMC - IP21

Main		
Range of product	Altivar 212	¢
Product or component type	Variable speed drive	-
Device short name	ATV212	$\stackrel{\square}{\circ}$
Product destination	Asynchronous motors	$\stackrel{\square}{4}$
Product specific application	Pumps and fans in HVAC	$\stackrel{\text { a }}{ }$
Assembly style	With heat sink	-
Network number of phases	3 phases	$\stackrel{\text { ¢ }}{ }$
Motor power kW	37 kW	\%
Motor power hp	50 hp	\%
[Us] rated supply voltage	380...480 V - 15... 10 \%	E
Supply voltage limits	323... 528 V	\%
Supply frequency	$50 . .60 \mathrm{~Hz}-5 . .5$ \%	흥
Network frequency	47.5..63 Hz	®
EMC filter	Class C2 EMC filter integrated	$\stackrel{\text { ¢ }}{\square}$
Line current	68.9 A 380 V	$\stackrel{0}{0}$
	54.4 A 480 V	$\stackrel{\square}{\square}$
		$\stackrel{\text { ¢ }}{0}$
Complementary		
Apparent power	52 kVA 380 V	\%
Prospective line Isc	22 kA	\%
Continuous output current	79 A 380 V	$\stackrel{\text { ® }}{\text { ¢ }}$
	79 A 460 V	$\stackrel{\square}{\square}$
Maximum transient current	86.9 A 60 s	-
Speed drive output frequency	0.5... 200 Hz	$\stackrel{\text { © }}{\text { ¢ }}$
Nominal switching frequency	8 kHz	-
Switching frequency	$6 . . .16 \mathrm{kHz}$ adjustable $8 . . .16 \mathrm{kHz}$ with derating factor	$\xrightarrow{\text { ¢ }}$
Speed range	1... 10	-

Speed accuracy	+/- 10% of nominal slip 0.2 Tn to Tn
Torque accuracy	+/-15 \%
Transient overtorque	120 \% of nominal motor torque +/-10\% 60 s
Asynchronous motor control profile	Voltage/Frequency ratio, 2 points Voltage/Frequency ratio, 5 points Flux vector control without sensor, standard Voltage/Frequency ratio - Energy Saving, quadratic U/f Voltage/Frequency ratio, automatic IR compensation (U/f + automatic Uo)
Regulation loop	Adjustable PI regulator
Motor slip compensation	Adjustable Automatic whatever the load Not available in voltage/frequency ratio motor control
Local signalling	1 LED red DC bus energized
Output voltage	<= power supply voltage
Isolation	Electrical between power and control
Type of cable	IEC cable without mounting kit $145^{\circ} \mathrm{C}$ copper $90^{\circ} \mathrm{C}$ XLPE/EPR IEC cable without mounting kit $145^{\circ} \mathrm{C}$ copper $70^{\circ} \mathrm{C}$ PVC UL 508 cable with UL Type 1 kit $340^{\circ} \mathrm{C}$ copper $75^{\circ} \mathrm{C}$ PVC
Electrical connection	Terminal $2.5 \mathrm{~mm}^{2}$ AWG 14 VIA, VIB, FM, FLA, FLB, FLC, RY, RC, F, R, RES Terminal $50 \mathrm{~mm}^{2}$ AWG $1 / 0 \mathrm{~L} 1 / \mathrm{R}, \mathrm{L} 2 / \mathrm{S}, \mathrm{L} 3 / \mathrm{T}$
Tightening torque	24 N.m 212 Ib.in L1/R, L2/S, L3/T 0.6 N.m VIA, VIB, FM, FLA, FLB, FLC, RY, RC, F, R, RES
Supply	Internal supply for reference potentiometer (1 to 10 kOhm) 10.5 V DC $+/-5 \%$ <= 10 A overload and short-circuit protection Internal supply 24 V DC $21 \ldots 27 \mathrm{~V}<=200$ A overload and short-circuit protection
Analogue input number	2
Analogue input type	Switch-configurable voltage VIA $0 . .10 \mathrm{~V}$ DC 24 V max 30000 Ohm 10 bits Configurable voltage VIB 0... 10 V DC 24 V max 30000 Ohm 10 bits Configurable PTC probe VIB $0 \ldots 6$ probes 1500 Ohm Switch-configurable current VIA $0 . . .20 \mathrm{~mA} 250$ Ohm 10 bits
Sampling duration	$2 \mathrm{~ms}+/-0.5 \mathrm{~ms}$ F discrete $2 \mathrm{~ms}+/-0.5 \mathrm{~ms} R$ discrete $2 \mathrm{~ms}+/-0.5 \mathrm{~ms}$ RES discrete $3.5 \mathrm{~ms}+/-0.5 \mathrm{~ms}$ VIA analog $22 \mathrm{~ms}+/-0.5 \mathrm{~ms}$ VIB analog
Response time	$\begin{aligned} & 2 \mathrm{~ms}+/-0.5 \mathrm{~ms} \text { FM analog } \\ & 7 \mathrm{~ms}+/-0.5 \mathrm{~ms} \text { FLA, FLC discrete } \\ & 7 \mathrm{~ms}+/-0.5 \mathrm{~ms} \text { FLB, FLC discrete } \\ & 7 \mathrm{~ms}+/-0.5 \mathrm{~ms} \text { RY, RC discrete } \end{aligned}$
Accuracy	$+/-0.6 \%$ VIA for a temperature variation $60^{\circ} \mathrm{C}$ $+/-0.6 \%$ VIB for a temperature variation $60^{\circ} \mathrm{C}$ $+/-1 \% \mathrm{FM}$ for a temperature variation $60^{\circ} \mathrm{C}$
Linearity error	$+/-0.15 \%$ of maximum value input VIA $+/-0.15 \%$ of maximum value input VIB +/- 0.2 \% output FM
Analogue output number	1
Analogue output type	Switch-configurable voltage FM $0 . . .10$ V DC 7620 Ohm 10 bits Switch-configurable current FM $0 . . .20 \mathrm{~mA} 970$ Ohm 10 bits
Discrete output number	2
Discrete output type	Configurable relay logic FLA, FLC NO 100000 cycles Configurable relay logic FLB, FLC NC 100000 cycles Configurable relay logic RY, RC NO 100000 cycles
Minimum switching current	3 mA 24 V DC configurable relay logic
Maximum switching current	5 A 250 V AC resistive cos phi $=1 \mathrm{~L} / \mathrm{R}=0 \mathrm{~ms} \mathrm{FL}, \mathrm{R}$ 5 A 30 V DC resistive cos phi $=1 \mathrm{~L} / \mathrm{R}=0 \mathrm{~ms} \mathrm{FL}, \mathrm{R}$ 2 A 250 V AC inductive cos phi $=0.4 \mathrm{~L} / \mathrm{R}=7 \mathrm{~ms} \mathrm{FL}, \mathrm{R}$ 2 A 30 VDC inductive cos phi $=0.4 \mathrm{~L} / \mathrm{R}=7 \mathrm{~ms} \mathrm{FL}, \mathrm{R}$
Discrete input type	Programmable F 24 V DC level 1 PLC 4700 Ohm Programmable R 24 V DC level 1 PLC 4700 Ohm Programmable RES 24 V DC level 1 PLC 4700 Ohm
Discrete input logic	Positive logic (source) F, R, RES <=5 V >= 11 V Negative logic (sink) F, R, RES $>=16 \mathrm{~V}<=10 \mathrm{~V}$
Acceleration and deceleration ramps	Automatic based on the load Linear adjustable separately from 0.01 to 3200 s

Braking to standstill	By DC injection
Protection type	Motor phase break motor Break on the control circuit drive Thermal power stage drive Overvoltages on the DC bus drive Against exceeding limit speed drive Against input phase loss drive With PTC probes motor Input phase breaks drive Line supply overvoltage and undervoltage drive Line supply undervoltage drive Overcurrent between output phases and earth drive Overheating protection drive Short-circuit between motor phases drive Thermal protection motor
Dielectric strength	3535 V DC between earth and power terminals 5092 V DC between control and power terminals
Insulation resistance	>= 1 MOhm 500 V DC for 1 minute
Frequency resolution	$0.024 / 50 \mathrm{~Hz}$ analog input 0.1 Hz display unit
Communication port protocol	APOGEE FLN BACnet LonWorks METASYS N2 Modbus
Connector type	1 RJ45 1 open style
Physical interface	2-wire RS 485
Transmission frame	RTU
Transmission rate	9600 bps or 19200 bps
Data format	8 bits, 1 stop, odd even or no configurable parity
Type of polarization	No impedance
Number of addresses	1... 247
Communication service	Monitoring inhibitable Read device identification (43) Read holding registers (03) 2 words maximum Time out setting from 0.1 to 100 s Write multiple registers (16) 2 words maximum Write single register (06)
Option card	Communication card LonWorks
Operating position	Vertical +/-10 degree
Width	240 mm
Height	550 mm
Depth	244 mm
Power dissipation in W	976 W
Air flow	$334 \mathrm{~m} 3 / \mathrm{h}$
Functionality	Mid
Specific application	HVAC
IP degree of protection	IP21
Variable speed drive application selection	Building - HVAC : compressor for scroll Building - HVAC : fan Building - HVAC : pump
Motor power range AC-3	$30 \ldots 50 \mathrm{~kW}$ at $380 \ldots 440 \mathrm{~V} 3$ phases $30 . . .50 \mathrm{~kW}$ at 480 ... 500 V 3 phases
Motor starter type	Variable speed drive

Environment

Electromagnetic compatibility
Conducted radio-frequency immunity test level 3 IEC 61000-4-6
Voltage dips and interruptions immunity test IEC 61000-4-11
$1.2 / 50 \mu \mathrm{~s}-8 / 20 \mu \mathrm{~s}$ surge immunity test level 3 IEC 61000-4-5
Electrical fast transient/burst immunity test level 4 IEC 61000-4-4
Electrostatic discharge immunity test level 3 IEC 61000-4-2

Radiated radio-frequency electromagnetic field immunity test level 3 IEC 61000-4-3

Pollution degree	3 IEC 61800-5-1
IP degree of protection	IP20 on upper part without blanking plate on cover EN/IEC 61800-5-1 IP20 on upper part without blanking plate on cover EN/IEC 60529 IP21 EN/IEC 61800-5-1 IP21 EN/IEC 60529 IP41 on upper part EN/IEC 61800-5-1 IP41 on upper part EN/IEC 60529
Vibration resistance	$1 \mathrm{gn} 13 \ldots 200 \mathrm{~Hz}$ EN/IEC 60068-2-8 $1.5 \mathrm{~mm} 3 . . .13 \mathrm{~Hz}$ EN/IEC 60068-2-6
Shock resistance	15 gn 11 ms IEC 60068-2-27
Environmental characteristic	Classes 3C1 IEC 60721-3-3 Classes 3S2 IEC 60721-3-3
Noise level	64 dB 86/188/EEC
Operating altitude	$1000 . . .3000 \mathrm{~m}$ limited to 2000 m for the Corner Grounded distribution network with current derating 1 \% per 100 m <= 1000 m without derating
Relative humidity	5... 95 \% without condensation IEC 60068-2-3 $5 . . .95 \%$ without dripping water IEC 60068-2-3
Ambient air temperature for operation	$-10 \ldots 40^{\circ} \mathrm{C}$ without derating $>40 \ldots 50^{\circ} \mathrm{C}$ with derating factor
Ambient air temperature for storage	$-25 . . .70^{\circ} \mathrm{C}$
Standards	EN 55011 class A group 1 EN 61800-3 EN 61800-3 category C2 EN 61800-3 category C3 EN 61800-3 environments 1 category C1 EN 61800-3 environments 1 category C2 EN 61800-3 environments 1 category C3 EN 61800-3 environments 2 category C1 EN 61800-3 environments 2 category C2 EN 61800-3 environments 2 category C3 EN 61800-5-1 IEC 61800-3 IEC 61800-3 category C2 IEC 61800-3 category C3 IEC 61800-3 environments 1 category C1 IEC 61800-3 environments 1 category C2 IEC 61800-3 environments 1 category C3 IEC 61800-3 environments 2 category C1 IEC 61800-3 environments 2 category C2 IEC 61800-3 environments 2 category C3 IEC 61800-5-1 UL Type 1
Product certifications	CSA C-Tick NOM 117 UL
Marking	CE

Offer Sustainability

Sustainable offer status	Green Premium product
RoHS (date code: YYWW)	Compliant - since 1050-Schneider Electric declaration of conformity
	S.Schneider Electric declaration of conformity

REACh	Reference not containing SVHC above the threshold Reference not containing SVHC above the threshold
Product environmental profile	Available
	Available
Product end of life instructions	Avironmental Profile

Contractual warranty
Warranty period 18 months

Dimensions Drawings

Dimensions

Dimensions in mm

ATV212H	a	b	c	G	H	K	\varnothing
D22M3X D22N4, D30N4	240	420	214	206	403	10	6
D37N4, D45N4	240	550	244	206	529	10	6

Dimensions in in.

ATV212H	a	b	c	G	H	K	Ø
D22M3X D22N4, D30N4	9.45	16.54	8.43	8.11	15.87	0.39	0.24
D37N4, D45N4	9.45	21.65	9.60	8.11	20.83	0.39	0.24

EMC mounting plate (supplied with drive)

Dimensions in mm

ATV212H	b1	c1
D22M3X D22N4, D30N4	122	120
D37N4, D45N4	113	127

Dimensions in in.

ATV212H	b1	c 1
D22M3X D22N4, D30N4	4.80	4.72
D37N4, D45N4	4.45	5.00

Clearance

Depending on the conditions in which the drive is to be used, its installation will require certain precautions and the use of appropriate accessories.

Install the unit vertically:

- Do not place it close to heating elements.
- Leave sufficient free space to ensure that the air required for cooling purposes can circulate from bottom to the top of the unit.

Mounting Types
Type A mounting
mm

Type B mounting

Type C mounting
$\frac{\mathrm{mm}}{\mathrm{in} .}$

By removing the protective blanking cover from the top of the drive, the degree of protection for the drive becomes IP21. The protective blanking cover may vary according to the drive model, see opposite.

To help ensure proper air circulation in the drive:

- Fit ventilation grilles.
- Check that there is sufficient ventilation. If there is not, install a forced ventilation unit with a filter. The openings and/or fans must provide a flow rate at least
- Use special filters with UL Type 12/IP54 protection.
- Remove the blanking cover from the top of the drive.

Sealed Metal Enclosure (IP54 Degree of Protection)

The drive must be mounted in a dust and damp proof enclosure in certain environmental conditions, such as dust, corrosive gases, high humidity with risk of condensation and dripping water, splashing liquid, etc. This enables the drive to be used in an enclosure where the maximum internal temperature reaches $50^{\circ} \mathrm{C}$.

```
3-Phase Power Supply
```



```
A1: ATV 212 drive
KM1: Contactor
Q1: Circuit breaker
Q2: \(\quad\) GV2 L rated at twice the nominal primary current of T1
Q3: GB2CB05
S1, S2: XB4 B or XB5 A pushbuttons
T1: \(\quad 100\) VA transformer 220 V secondary
(1) Fault relay contacts for remote signalling of the drive status
(2) Connection of the common for the logic inputs depends on the positioning of the switch (Source, PLC, Sink)
(3) Reference potentiometer SZ1RV1202
```

NOTE: All terminals are located at the bottom of the drive. Install interference suppressors on all inductive circuits near the drive or connected on the same circuit, such as relays, contactors, solenoid valves, fluorescent lighting, etc.

Switches (Factory Settings)

Voltage/current selection for analog I/O (VIA and VIB)

Voltage/current selection for analog I/O (FM)

Selection of logic type

PLC	
Sink (1)	Source (2)
(1)	negative logic
(2)	positive logic

Logic Inputs According to the Position of the Logic Type Switch
"Source" position

"Sink" position

"PLC" position with PLC transistor outputs	
(1) PLC	(1) PLC

2-wire control

F: Forward
R: Preset speed
(2) ATV 212 control terminals

F: Forward
R: Stop
RES: Reverse
(2) ATV 212 control terminals

PTC probe

(2) ATV 212 control terminals
(3) Motor

Analog Inputs
Voltage analog inputs
External +10 V

(2) ATV 212 control terminals
(4) Speed reference potentiometer 2.2 to $10 \mathrm{k} \Omega$

(2) ATV 212 control terminals

Analog input configured for current: 0-20 mA, 4-20 mA, X-Y mA

(5)
(2) ATV 212 control terminals
(5) Source 0-20 mA, 4-20 mA, X-Y mA

Analog input VIA configured as positive logic input ("Source" position)

Analog input VIA configured as negative logic input ("Sink" position)

(2)

ATV 212 control terminals

Performance Curves

Derating Curves

The derating curves for the drive nominal current (In) depend on the temperature, the switching frequency and the mounting type (A, B or C). For intermediate temperatures $\left(45^{\circ} \mathrm{C}\right.$ for example), interpolate between 2 curves.

X
Switching frequency

