Lok-Bolt ${ }^{\text {m }}$ Sleeve Expansion Anchor

PRODUCT DESCRIPTION

The Lok-Bolt is a pre-assembled single unit sleeve anchor available in carbon steel and stainless steel which can be used in concrete, block, brick, and stone. The Lok-Bolt is designed to draw the fixture into full bearing against the base material through the action of its unique and flexible compression ring. This helps to increase the resistance of the anchor to loosening when subjected to vibratory loads. As the anchor is being tightened, the nylon compression ring will compress if necessary, so that the fixture is tightly secured against the face of the base material. Under load, the specially tapered plow bolt is drawn further into the expansion sleeve to develop increased locking action against the walls of the hole. Extension sleeves are added for longer lengths.

GENERAL APPLICATIONS AND USES

- Door and Window Frame Installations
- Mounting fixtures on walls
- Mounting of Handrails and Fencing
- Shelving and Storage
- Masonry Applications
- Electrical and Mechanical Attachments

FEATURES AND BENEFITS

- Multiple head styles for multiple applications and finished appearance
- Fits standard fixture holes - No need to undersize anchors for proper fit
- Immediate Loading - Minimizes downtime
- Sleeve has 360° contact area and reduces concrete stress
- Versatile and ideal for concrete, or masonry
- Available in carbon steel and Type 304 stainless steel

APPROVALS AND LISTINGS

Factory Mutual Research Corporation (FM Approvals) Serial No. 26692, J.I. OJ8A1.AH, J.I. OJ9A9.AH

Underwriters Laboratory (UL Listed) File No. EX 1289 (N) See listing for applicable sizes and styles.

GUIDE SPECIFICATIONS

CSI Divisions: 03151-Concrete Anchoring, 04081-Masonry Anchorage and 05090-Metal Fastenings. Sleeve Anchors shall be Lok-Bolt anchors as supplied by Powers Fasteners, Inc., Brewster, NY.

SECTION CONTENTS Page No.

General Information..................... 1
Installation Specifications 2
Material Specifications 2
Performance Data......................... 3
Design Criteria 5
Ordering Information .8

HEAD STYLES

```
Hex Head
Acorn Nut
Round Head
Combo Flat Head
Threshold Flat Head
Rod Hanger
Tie-Wire
```


ANCHOR MATERIALS

Zinc Plated Carbon Steel Type 304 Stainless Steel

ANCHOR SIZE RANGE (TYP.)

$1 / 4^{\prime \prime}$ diameter $\times 5 / 8^{\prime \prime}$ length to
3/4" diameter x 7-1/2" length

SUITABLE BASE MATERIALS

Normal-Weight Concrete
Structural Lightweight Concrete
Grouted Concrete Masonry
Hollow Concrete Masonry

INSTALLATION SPECIFICATIONS

Acorn Nut and Hex Head Lok-Bolt

Dimension	Anchor Size, d					
	$\mathbf{1 / 4 "}$	$5 / 16^{\prime \prime}$	$3 / 8^{"}$	$\mathbf{1 / 2 "}$	$5 / 8^{"}$	$3 / 4 "$
	$1 / 4$	$5 / 16$	$3 / 8$	$1 / 2$	$5 / 8$	$3 / 4$
Fixture Clearance Hole, d_{h} (in.)	$5 / 16$	$3 / 8$	$7 / 16$	$9 / 16$	$11 / 16$	$15 / 16$
Plow Bolt Size (UNC)	$10-24$	$1 / 4-20$	$5 / 16-18$	$3 / 8-16$	$1 / 2-13$	$5 / 8-11$
Nut Height (in.)	$3 / 16$	$7 / 32$	$17 / 64$	$21 / 64$	$7 / 16$	$35 / 64$
Washer O.D., d_{w} (in.)	$1 / 2$	$5 / 8$	$13 / 16$	1	$13 / 8$	$13 / 4$
Wrench Size (in.)	$3 / 8$	$7 / 16$	$1 / 2$	$9 / 16$	$3 / 4$	$15 / 16$

Round Head Lok-Bolt

Dimension	Anchor Size, \boldsymbol{d}		
	$\mathbf{1 / 4} \mathbf{" 1}^{\prime \prime}$	$\mathbf{5} / 16^{"}$	$3 / \mathbf{" 1}^{\prime \prime}$
ANSI Drill Bit Size, $d_{\text {bit }}$ (in.)	$1 / 4$	$5 / 16$	$3 / 8$
Fixture Clearance Hole, d_{h} (in.)	$5 / 16$	$3 / 8$	$7 / 16$
Plow Bolt Size (UNC)	$10-24$	$1 / 4-20$	$5 / 16-18$
Head Height (in.)	$11 / 64$	$13 / 64$	$15 / 64$
Head Width, $d_{h d}$ (in.)	$29 / 64$	$9 / 16$	$43 / 64$

Combo Flat Head Lok-Bolt

Dimension	Anchor Size, \boldsymbol{d}		
	$\mathbf{1 / 4 "}$	$\mathbf{5 / 1 6 "}$	$\mathbf{3 / 8 "}$
ANSI Drill Bit Size, $d_{\text {bit }}$ (in.)	$1 / 4$	$5 / 16$	$3 / 8$
Fixture Clearance Hole, d_{h} (in.)	$5 / 16$	$3 / 8$	$7 / 16$
Plow Bolt Size (UNC)	$10-24$	$1 / 4-20$	$5 / 16-18$
Head Height (in.)	$5 / 32$	$3 / 16$	$15 / 64$
Head Width, $d_{h d}$ (in.)	$1 / 2$	$5 / 8$	$3 / 4$

Rod Hanger Lok-Bolt

Dimension	Anchor Size, d		
	$\mathbf{1 / 4 "}$	$3 / \mathbf{"}^{\prime \prime}$	$\mathbf{1 / 2 "}$
ANSI Drill Bit Size, d $\mathbf{d}_{\text {it }}$ (in.)	$1 / 4$	$3 / 8$	$1 / 2$
Plow Bolt Size (UNC)	$1 / 4-20$	$5 / 16-18$	$3 / 8-16$
Coupling Height (in.)	$7 / 8$	1	$1 / 1 / 4$
Washer O.D., d_{w} (in.)	$5 / 8$	$13 / 16$	1
Coupling Wrench Size (in.)	$7 / 16$	$1 / 2$	$11 / 16$

Threshold Lok-Bolt

Dimension	Anchor Size, d
	$1 / 4{ }^{\prime \prime}$
ANSI Drill Bit Size, $d_{\text {bit }}$ (in.)	$1 / 4$
Fixture Clearance Hole, d_{h} (in.)	$5 / 16$
Plow Bolt Size (UNC)	$10-24$
Head Height (in.)	$5 / 64$
Head Width, $d_{h d}$ (in.)	$23 / 64$

Tire-Wire Lok-Bolt

Dimension	Anchor Size, d
	$5 / 16^{\prime \prime}$
ANSI Drill Bit Size, $d_{\text {bit }}$ (in.)	$5 / 16$
Fixture Clearance Hole, d_{h} (in.)	$1 / 4$
Plow Bolt Size (UNC)	$1 / 4-20$
Head Height (in.)	$19 / 16$
Head Width, $d_{h d}$ (in.)	$31 / 64$

Installation Guidelines

Using the proper diameter bit, drill a hole into the base material to a depth of at least $1 / 2^{\prime \prime}$ or one anchor diameter deeper than the embedment required. The tolerances of the drill bit used should meet the requirements of ANSI Standard B212.15.

Blow the hole clean of dust and other material. Do not expand the anchor prior to installation.

Drive the anchor through the fixture into the anchor hole until the head is firmly seated against the fixture. Be sure the anchor is driven to the required embedment depth.

Tighten the anchor by turning the nut of head 3 to 5 turns past finger tight or by applying the guide installation torque from the finger tight position.

MATERIAL SPECIFICATIONS

General Lok-Bolt Components

Anchor Component	Component Material	
	Carbon Steel	Stainless Steel
Expansion Sleeve	AISI 1010 / 1010 / 1020	Type 18-8 SS
Extension Sleeve	AISI 1010 / 1020	Type 304 SS
Compression Ring	Nylon	Nylon
Zinc Plating	ASTM B633, SC1 Type III (Fe/Zn 5)	N/A

Lok-Bolt Head Components

Anchor Component	Component Material	
	Carbon Steel	Stainless Stee
Hex Nut	ASTM A 563, Grade A	Type 304 SS
Acorn Nut	AISI 1010 / 1018	Type 304 SS
Washer	ASTM F 844	Type 18-8 SS
Round Head	AISI 1010 / 1018	Type 304 SS
Flat Head	AIS 1010 / 1018	Type 304 SS
Rod Coupling	AISI 12L14	Type 18-8 SS
Threshold	AISI 1010 / 1018	N/A
Tie-Wire	AISI 1010 / 1018	N/A
Zinc Plating	ASTM B 633, SC1, Type III (Fe/Zn 5)	N/A

PERFORMANCE DATA

Ultimate Load Capacities for Carbon and Stainless Steel Lok-Bolt in Normal-Weight Concrete ${ }^{1}$

Anchor Diameter$\begin{gathered} d \\ \text { in. } \\ (\mathrm{mm}) \end{gathered}$	Minimum Embed. Depth h_{v} in. (mm)	Maximum Tightening Torque $T_{\text {max }}$ ft.-lbs.		Minimum Concrete Compressive Strength ($f_{\text {' }}$)					
				2,000 psi (13.8 MPa)		4,000 psi (27.6 MPa)		6,000 psi (41.4 MPa)	
				$\begin{gathered} \text { Tension } \\ \text { lbs. } \\ (\mathrm{kN}) \\ \hline \end{gathered}$	Shear lbs. (kN)	Tension lbs. (kN)	Shear lbs. (kN)	Tension lbs. (kN)	Shear lbs. (kN)
		Carbon	Stainless						
$\begin{gathered} 1 / 4 \\ (6.4) \end{gathered}$	$\begin{gathered} 5 / 8 \\ (15.9) \end{gathered}$	3-4	2-3	$\begin{aligned} & \hline 540 \\ & (2.4) \end{aligned}$	$\begin{aligned} & 1,000 \\ & (4.5) \end{aligned}$	$\begin{gathered} 620 \\ (2.8) \end{gathered}$	$\begin{aligned} & 1,200 \\ & (5.4) \end{aligned}$	$\begin{array}{r} 680 \\ (3.1) \end{array}$	$\begin{aligned} & 1,200 \\ & (5.4) \end{aligned}$
	$\begin{array}{r} 11 / 8 \\ (28.6) \\ \hline \end{array}$			$\begin{aligned} & 1,000 \\ & (4.5) \end{aligned}$	$\begin{aligned} & 1,520 \\ & (6.8) \\ & \hline \end{aligned}$	$\begin{aligned} & 1,150 \\ & (5.1) \\ & \hline \end{aligned}$	$\begin{aligned} & 1,520 \\ & (6.8) \end{aligned}$	$\begin{aligned} & 1,150 \\ & (5.1) \\ & \hline \end{aligned}$	$\begin{aligned} & 1,520 \\ & (6.8) \end{aligned}$
$\begin{aligned} & 5 / 16 \\ & (7.9) \\ & \hline \end{aligned}$	$\begin{array}{r} 11 / 2 \\ (38.1) \\ \hline \end{array}$	6-8	-	$\begin{aligned} & \hline 2,000 \\ & (8.9) \end{aligned}$	$\begin{aligned} & \hline 1,520 \\ & (6.8) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 2,040 \\ (9.0) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 1,520 \\ & (6.8) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 2,040 \\ (9.0) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 1,520 \\ & (6.8) \\ & \hline \end{aligned}$
$\begin{array}{r} \hline 3 / 8 \\ (9.5) \end{array}$	$\begin{array}{r} 15 / 8 \\ (41.3) \\ \hline \end{array}$	12-16	8-11	$\begin{aligned} & 2,450 \\ & (11.1) \end{aligned}$	$\begin{aligned} & \hline 2,440 \\ & (11.0) \end{aligned}$	$\begin{aligned} & 2,680 \\ & (12.1) \end{aligned}$	$\begin{aligned} & 2,440 \\ & (11.0) \\ & \hline \end{aligned}$	$\begin{aligned} & 2,700 \\ & (12.2) \\ & \hline \end{aligned}$	$\begin{aligned} & 2,440 \\ & (11.0) \\ & \hline \end{aligned}$
$\begin{gathered} 1 / 2 \\ (12.7) \\ \hline \end{gathered}$	$\begin{gathered} 21 / 4 \\ (57.2) \end{gathered}$	20-28	15-20	$\begin{aligned} & \hline 4,770 \\ & (21.5) \end{aligned}$	$\begin{aligned} & \hline 4,210 \\ & (19.0) \end{aligned}$	$\begin{aligned} & \hline 5,015 \\ & (22.6) \end{aligned}$	$\begin{aligned} & \hline 4,220 \\ & (19.0) \end{aligned}$	$\begin{aligned} & \hline 5,275 \\ & (23.7) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 4,210 \\ & (19.0) \end{aligned}$
$\begin{gathered} 5 / 8 \\ (15.9) \end{gathered}$	$\begin{gathered} \hline 21 / 4 \\ (57.2) \end{gathered}$	45-60	30-40	$\begin{aligned} & \hline 3,270 \\ & (14.7) \end{aligned}$	$\begin{aligned} & \hline 7,200 \\ & (32.4) \end{aligned}$	$\begin{aligned} & \hline 5,860 \\ & (26.4) \end{aligned}$	$\begin{aligned} & \hline 7,200 \\ & (32.4) \end{aligned}$	$\begin{aligned} & \hline 6,250 \\ & (28.1) \end{aligned}$	$\begin{aligned} & \hline 7,200 \\ & (32.4) \end{aligned}$
	$\begin{array}{r} 23 / 4 \\ (69.9) \\ \hline \end{array}$			$\begin{aligned} & \hline 6,060 \\ & (27.3) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 7,820 \\ & (35.2) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 6,620 \\ & (29.8) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 7,820 \\ & (35.2) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 6,800 \\ & (30.6) \end{aligned}$	$\begin{aligned} & \hline 7,810 \\ & (35.2) \\ & \hline \end{aligned}$
$\begin{gathered} 3 / 4 \\ (19.1) \end{gathered}$	$\begin{gathered} 21 / 4 \\ (57.2) \end{gathered}$	70-90	45-60	$\begin{aligned} & \hline 4,480 \\ & (20.2) \end{aligned}$	$\begin{aligned} & 9,840 \\ & (44.3) \end{aligned}$	$\begin{aligned} & \hline 8,420 \\ & (37.9) \end{aligned}$	$\begin{aligned} & 11,670 \\ & (52.5) \end{aligned}$	$\begin{aligned} & \hline 8,940 \\ & (40.2) \end{aligned}$	$\begin{aligned} & 11,670 \\ & (52.5) \end{aligned}$
	$\begin{array}{r} 33 / 8 \\ (85.7) \\ \hline \end{array}$			$\begin{array}{r} \hline 6,790 \\ (30.6) \\ \hline \end{array}$	$\begin{aligned} & \hline 12,600 \\ & (56.7) \end{aligned}$	$\begin{aligned} & \hline 8,720 \\ & (39.2) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 12,600 \\ & (56.7) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 8,940 \\ & (40.2) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 12,600 \\ & (56.7) \\ & \hline \end{aligned}$

1. The values listed above are ultimate load capacities which should be reduced by a minimum safety factor of 4.0 or greater to determine the allowable working load. Consideration of safety factors of 10 or higher may be necessary depending on the application, such as life safety or overhead.

Allowable Load Capacities for Carbon and Stainless Steel Lok-Bolt in Normal-Weight Concrete ${ }^{1,2}$

Anchor Diameter d in. (mm)	Minimum Embed. Depth h_{v} in. (mm)	Maximum Tightening Torque $T_{\text {max }}$ ft.-lbs.		Minimum Concrete Compressive Strength ($f_{\text {' }}$)					
				2,000 psi (13.8 MPa)		4,000 psi (27.6 MPa)		6,000 psi (41.4 MPa)	
				Tension lbs. (kN)	Shear lbs. (kN)	Tension lbs. (kN)	Shear lbs. (kN)	Tension lbs. (kN)	Shear lbs. (kN)
		Carbon	Stainless						
$\begin{gathered} 1 / 4 \\ (6.4) \end{gathered}$	$\begin{gathered} 5 / 8 \\ (15.9) \end{gathered}$	3-4	2-3	$\begin{gathered} 135 \\ (0.6) \end{gathered}$	$\begin{aligned} & \hline 250 \\ & (1.1) \\ & \hline \end{aligned}$	$\begin{gathered} 155 \\ (0.7) \end{gathered}$	$\begin{array}{r} 300 \\ (1.4) \\ \hline \end{array}$	$\begin{gathered} 170 \\ (0.8) \end{gathered}$	$\begin{array}{r} \hline 300 \\ (1.4) \\ \hline \end{array}$
	$\begin{array}{r} 11 / 8 \\ (28.6) \\ \hline \end{array}$			$\begin{array}{r} \hline 250 \\ (1.0) \\ \hline \end{array}$	$\begin{gathered} \hline 380 \\ (1.7) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 285 \\ & (1.3) \\ & \hline \end{aligned}$	$\begin{array}{r} \hline 380 \\ (1.7) \\ \hline \end{array}$	$\begin{aligned} & \hline 285 \\ & (1.8) \end{aligned}$	$\begin{array}{r} \hline 380 \\ (1.7) \\ \hline \end{array}$
$\begin{aligned} & 5 / 16 \\ & (7.9) \\ & \hline \end{aligned}$	$\begin{aligned} & 11 / 2 \\ & (38.1) \end{aligned}$	6-8	-	$\begin{aligned} & \hline 500 \\ & (2.2) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 380 \\ & (1.7) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 510 \\ & (2.2) \end{aligned}$	$\begin{aligned} & \hline 380 \\ & (1.7) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 510 \\ & (2.2) \end{aligned}$	$\begin{aligned} & \hline 380 \\ & (1.7) \end{aligned}$
$\begin{gathered} \hline 3 / 8 \\ (9.5) \end{gathered}$	$\begin{gathered} 15 / 8 \\ (41.3) \end{gathered}$	12-16	8-11	$\begin{aligned} & \hline 615 \\ & (2.2) \end{aligned}$	$\begin{aligned} & \hline 610 \\ & (2.7) \end{aligned}$	$\begin{gathered} \hline 670 \\ (3.0) \end{gathered}$	$\begin{aligned} & \hline 610 \\ & (2.7) \end{aligned}$	$\begin{gathered} \hline 675 \\ (3.0) \end{gathered}$	$\begin{aligned} & \hline 610 \\ & (2.7) \end{aligned}$
$\begin{gathered} 1 / 2 \\ (12.7) \\ \hline \end{gathered}$	$\begin{gathered} \hline 21 / 4 \\ (57.2) \end{gathered}$	20-28	15-20	$\begin{aligned} & \hline 1,195 \\ & (5.4) \end{aligned}$	$\begin{aligned} & \hline 1,055 \\ & (4.7) \end{aligned}$	$\begin{aligned} & 1,255 \\ & (5.6) \end{aligned}$	$\begin{aligned} & 1,055 \\ & (4.7) \end{aligned}$	$\begin{aligned} & \hline 1,320 \\ & (5.9) \end{aligned}$	$\begin{aligned} & 1,055 \\ & (4.7) \end{aligned}$
$\begin{gathered} 5 / 8 \\ (15.9) \end{gathered}$	$\begin{gathered} 21 / 4 \\ (57.2) \end{gathered}$	45-60	30-40	$\begin{aligned} & 818 \\ & (3.7) \end{aligned}$	$\begin{aligned} & \hline 1,800 \\ & (8.1) \end{aligned}$	$\begin{aligned} & 1,465 \\ & (6.6) \end{aligned}$	$\begin{aligned} & \hline 1,800 \\ & (8.1) \end{aligned}$	$\begin{aligned} & 1,565 \\ & (7.0) \end{aligned}$	$\begin{aligned} & 1,800 \\ & (8.1) \end{aligned}$
	$\begin{aligned} & 23 / 4 \\ & (69.9) \end{aligned}$			$\begin{aligned} & \hline 1,515 \\ & (6.8) \end{aligned}$	$\begin{aligned} & \hline 1,955 \\ & (8.8) \end{aligned}$	$\begin{aligned} & \hline 1,655 \\ & (7.4) \end{aligned}$	$\begin{aligned} & \hline 1,955 \\ & (8.8) \end{aligned}$	$\begin{aligned} & \hline 1,700 \\ & (7.7) \end{aligned}$	$\begin{aligned} & \hline 1,955 \\ & (8.8) \end{aligned}$
$\begin{gathered} 3 / 4 \\ (19.1) \end{gathered}$	$\begin{gathered} \hline 21 / 4 \\ (57.2) \end{gathered}$	70-90	40-60	$\begin{aligned} & \hline 1,120 \\ & (5.0) \end{aligned}$	$\begin{aligned} & \hline 2,460 \\ & (11.1) \end{aligned}$	$\begin{aligned} & \hline 2,105 \\ & (9.5) \end{aligned}$	$\begin{aligned} & \hline 2,918 \\ & (13.1) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2,235 \\ & (10.1) \end{aligned}$	$\begin{aligned} & \hline 2,920 \\ & (13.1) \end{aligned}$
	$\begin{gathered} 33 / 8 \\ (85.7) \end{gathered}$			$\begin{aligned} & 1,700 \\ & (7.7) \end{aligned}$	$\begin{aligned} & \hline 3,150 \\ & (14.2) \end{aligned}$	$\begin{aligned} & 2,180 \\ & (9.8) \end{aligned}$	$\begin{aligned} & 3,150 \\ & (14.2) \end{aligned}$	$\begin{aligned} & 2,235 \\ & (10.1) \end{aligned}$	$\begin{aligned} & 3,150 \\ & (14.2) \end{aligned}$

[^0]Ultimate and Allowable Load Capacities for Carbon and Stainless Steel Lok-Bolt in Structural Lightweight Concrete ${ }^{1,2}$

Anchor Dia. d in. (mm)	Min. Embed. Depth h_{v} in. (mm)	Maximum Tightening Torque $T_{\text {max }}$ ft.-lbs.	Minimum Concrete Compressive Strength							
			$\boldsymbol{f}_{c}^{\prime}=3,000 \mathrm{psi}(20.7 \mathrm{MPa})$				$\boldsymbol{f}_{\boldsymbol{c}}^{\prime}=\mathbf{5 , 0 0 0} \mathbf{~ p s i ~}(34.5 \mathrm{MPa})$			
			Ultimate Load		Allowable Load		Ultimate Load		Allowable Load	
			Tension lbs. (kN)	Shear lbs. (kN)						
$\begin{gathered} \hline 1 / 4 \\ (6.4) \\ \hline \end{gathered}$	$\begin{gathered} \hline 1 / 4 \\ (6.4) \\ \hline \end{gathered}$	2-3	$\begin{aligned} & 1,040 \\ & (4.7) \end{aligned}$	$\begin{aligned} & \hline 1,160 \\ & (5.2) \end{aligned}$	$\begin{aligned} & \hline 260 \\ & (1.2) \end{aligned}$	$\begin{aligned} & \hline 290 \\ & (1.3) \end{aligned}$	$\begin{aligned} & \hline 1,240 \\ & (5.6) \end{aligned}$	$\begin{aligned} & \hline 1,160 \\ & (5.2) \end{aligned}$	$\begin{aligned} & \hline 310 \\ & (1.4) \end{aligned}$	$\begin{aligned} & \hline 290 \\ & (1.3) \end{aligned}$
$\begin{aligned} & \hline 5 / 16 \\ & (7.9) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 5 / 16 \\ & (7.9) \\ & \hline \end{aligned}$	5-6	$\begin{aligned} & 1,140 \\ & (5.1) \end{aligned}$	$\begin{aligned} & \hline 1,560 \\ & (7.0) \end{aligned}$	$\begin{aligned} & \hline 285 \\ & (1.3) \end{aligned}$	$\begin{gathered} 390 \\ (1.8) \end{gathered}$	$\begin{aligned} & \hline 1,720 \\ & (7.7) \end{aligned}$	$\begin{aligned} & \hline 1,560 \\ & (7.0) \end{aligned}$	$\begin{aligned} & \hline 430 \\ & (1.9) \end{aligned}$	$\begin{aligned} & \hline 390 \\ & (1.8) \end{aligned}$
$\begin{gathered} \hline 3 / 8 \\ (9.5) \end{gathered}$	$\begin{gathered} \hline 3 / 8 \\ (9.5) \end{gathered}$	8-11	$\begin{aligned} & 1,180 \\ & (5.3) \end{aligned}$	$\begin{aligned} & \hline 2,600 \\ & (11.7) \end{aligned}$	$\begin{aligned} & \hline 295 \\ & (1.3) \end{aligned}$	$\begin{gathered} \hline 650 \\ (2.9) \end{gathered}$	$\begin{aligned} & \hline 1,720 \\ & (7.7) \end{aligned}$	$\begin{aligned} & \hline 2,600 \\ & (11.7) \end{aligned}$	$\begin{aligned} & \hline 430 \\ & (1.9) \end{aligned}$	$\begin{aligned} & \hline 650 \\ & (2.9) \end{aligned}$
$\begin{gathered} 1 / 2 \\ (12.7) \end{gathered}$	$\begin{gathered} 1 / 2 \\ (12.7) \end{gathered}$	15-20	$\begin{aligned} & 2,400 \\ & (10.8) \end{aligned}$	$\begin{aligned} & 4,020 \\ & (18.1) \end{aligned}$	$\begin{aligned} & \hline 600 \\ & (2.7) \end{aligned}$	$\begin{aligned} & 1,005 \\ & (4.5) \end{aligned}$	$\begin{aligned} & \hline 3,780 \\ & (17.0) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 4,020 \\ & (18.1) \end{aligned}$	$\begin{gathered} 945 \\ (4.3) \end{gathered}$	$\begin{gathered} 1,005 \\ (4.5) \end{gathered}$
$\begin{gathered} 5 / 8 \\ (15.9) \\ \hline \end{gathered}$	$\begin{gathered} 5 / 8 \\ (15.9) \\ \hline \end{gathered}$	30-40	$\begin{aligned} & 3,740 \\ & (16.8) \\ & \hline \end{aligned}$	$\begin{aligned} & 6,420 \\ & (28.9) \end{aligned}$	$\begin{aligned} & \hline 935 \\ & (4.2) \\ & \hline \end{aligned}$	$\begin{aligned} & 1,605 \\ & (7.2) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 4,640 \\ & (20.9) \end{aligned}$	$\begin{aligned} & \hline 6,420 \\ & (28.9) \end{aligned}$	$\begin{aligned} & 1,160 \\ & (5.2) \end{aligned}$	$\begin{aligned} & 1,605 \\ & (7.2) \end{aligned}$
$\begin{gathered} 3 / 4 \\ (19.1) \end{gathered}$	$\begin{gathered} 3 / 4 \\ (19.1) \end{gathered}$	40-60	$\begin{aligned} & \hline 3,740 \\ & (16.8) \end{aligned}$	$\begin{aligned} & 10,440 \\ & (47.0) \end{aligned}$	$\begin{aligned} & 935 \\ & (4.2) \end{aligned}$	$\begin{aligned} & \hline 2,610 \\ & (11.7) \end{aligned}$	$\begin{aligned} & \hline 4,640 \\ & (20.9) \end{aligned}$	$\begin{aligned} & 10,440 \\ & (47.0) \end{aligned}$	$\begin{aligned} & 1,160 \\ & (5.2) \end{aligned}$	$\begin{aligned} & \hline 2,610 \\ & (11.7) \end{aligned}$

1. The values listed above are ultimate and allowable load capacities for anchors in sand-lightweight concrete
2. Allowable load capacities are calculated using an applied safety factor of 4.0. Consideration of safety factors of 10 or higher may be necessary depending on the application, such as life safety or overhead.

Ultimate and Allowable Load Capacities for Carbon and Stainless Steel Lok-Bolt Installed Through Metal Deck into Structural Lightweight Concrete ${ }^{1,2,3,4}$

Anchor Dia. d in. (mm)	Min. Embed. Depth h_{v} in. (mm)	Maximum Tightening Torque $T_{\text {max }}$ ft.-lbs.	Lightweight Concrete Over Minimum 20 Ga . Metal Deck $\boldsymbol{f}^{\prime} \mathbf{c} \geq \mathbf{3 , 0 0 0}$ (20.7 MPa)							
			Minimum 1-1/2" Wide Deck				Minimum 4-1/2" Wide Deck			
			Ultimate Load		Allowable Load		Ultimate Load		Allowable Load	
			Tension lbs. (kN)	Shear lbs. (kN)						
$\begin{array}{r} 1 / 4 \\ (6.4) \\ \hline \end{array}$	$\begin{array}{r} 11 / 4 \\ (31.8) \\ \hline \end{array}$	2-3	$\begin{aligned} & 1,080 \\ & (4.9) \\ & \hline \end{aligned}$	$\begin{aligned} & 1,920 \\ & (8.6) \\ & \hline \end{aligned}$	$\begin{array}{r} 270 \\ (1.2) \\ \hline \end{array}$	$\begin{aligned} & \hline 480 \\ & (2.2) \\ & \hline \end{aligned}$	$\begin{aligned} & 1,080 \\ & (4.9) \\ & \hline \end{aligned}$	$\begin{aligned} & 1,920 \\ & (8,6) \\ & \hline \end{aligned}$	$\begin{array}{r} 270 \\ (1.2) \\ \hline \end{array}$	$\begin{aligned} & 480 \\ & (2.2) \\ & \hline \end{aligned}$
$\begin{aligned} & 5 / 16 \\ & (7.9) \end{aligned}$	$\begin{aligned} & 11 / 2 \\ & (38.1) \end{aligned}$	5-6	$\begin{aligned} & 1,080 \\ & (4.9) \end{aligned}$	$\begin{aligned} & \hline 1,920 \\ & (8.6) \end{aligned}$	$\begin{aligned} & \hline 270 \\ & (1.2) \end{aligned}$	$\begin{aligned} & 480 \\ & (2.2) \end{aligned}$	$\begin{aligned} & 1,080 \\ & (4.9) \end{aligned}$	$\begin{aligned} & \hline 1,920 \\ & (8.6) \end{aligned}$	$\begin{aligned} & 270 \\ & (1.2) \end{aligned}$	$\begin{aligned} & 480 \\ & (2.2) \end{aligned}$
$\begin{gathered} \hline 3 / 8 \\ (9.5) \end{gathered}$	$\begin{gathered} 2 \\ (50.8) \end{gathered}$	8-11	$\begin{aligned} & 1,080 \\ & (4.9) \end{aligned}$	$\begin{aligned} & 2,480 \\ & (11.2) \end{aligned}$	$\begin{array}{r} 270 \\ (1.2) \\ \hline \end{array}$	$\begin{aligned} & \hline 620 \\ & (2.8) \end{aligned}$	$\begin{aligned} & 1,080 \\ & (4.9) \end{aligned}$	$\begin{aligned} & \hline 1,920 \\ & (8.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 270 \\ & (1.2) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 480 \\ & (2.2) \end{aligned}$
$\begin{gathered} 1 / 2 \\ (12.7) \end{gathered}$	$\begin{aligned} & 21 / 2 \\ & (63.5) \end{aligned}$	15-20	$\begin{aligned} & \hline 1,940 \\ & (8.7) \end{aligned}$	$\begin{aligned} & 2,480 \\ & (11.2) \end{aligned}$	$\begin{aligned} & \hline 485 \\ & (2.2) \end{aligned}$	$\begin{aligned} & \hline 620 \\ & (2.8) \end{aligned}$	$\begin{aligned} & \hline 2,840 \\ & (12.8) \end{aligned}$	$\begin{aligned} & \hline 4,640 \\ & (20.9) \end{aligned}$	$\begin{aligned} & \hline 710 \\ & (3.2) \end{aligned}$	$\begin{aligned} & 1,160 \\ & (5.2) \end{aligned}$
$\begin{gathered} 5 / 8 \\ (15.9) \end{gathered}$	$\begin{aligned} & 23 / 4 \\ & (69.9) \end{aligned}$	30-40	-	-	-	-	$\begin{aligned} & \hline 2,840 \\ & (12.8) \end{aligned}$	$\begin{aligned} & \hline 4,640 \\ & (20.9) \end{aligned}$	$\begin{aligned} & \hline 710 \\ & (3.2) \end{aligned}$	$\begin{aligned} & \hline 1,160 \\ & (5.2) \end{aligned}$
$\begin{gathered} \hline 3 / 4 \\ (19.1) \end{gathered}$	$\begin{gathered} 3 \\ (76.2) \end{gathered}$	40-60	-	-	-	-	$\begin{aligned} & 4,440 \\ & (20.0) \end{aligned}$	$\begin{aligned} & 9,060 \\ & (40.8) \end{aligned}$	$\begin{aligned} & \hline 1,110 \\ & (5.0) \end{aligned}$	$\begin{aligned} & \hline 2,265 \\ & (10.2) \end{aligned}$

[^1]1．Tabulated load values are for carbon and stainless steel anchors installed in minimum 6 －inch wide，Grade N， Type II，medium and normal－weight concrete masonry units．Mortar must be minimum Type N．Masonry prism compressive strength must be 1，500 psi minimum at the time of installation
2．Allowable loads are for carbon and stainless steel anchors and are based on average ultimate values using a safety factor of 5．0．Consideration of safety factors of 10 or higher may be necessary depending on the application，such as life safety or overhead．
Linear interpolation may be used for allowable loads for intermediate embedment depths．
4．The tabulated values are for anchors installed at a minimum of 12 anchor diameters on center for 100 percent capacity．Spacing distances may be reduced to 6 anchor diameters on center provided the capacities are reduced by 50 percent．Linear interpolation may be used for intermediate spacings．
5．Anchors with diameters of $1 / 2^{\prime \prime}$ and larger installed in hollow concrete masonry units are limited to one anchor per unit cell．
6．Anchors shall be of suitable length for the masonry wall thickness and attachment

Tabulated load values are for carbon and stainless steel anchors installed in Grade SW multiple wythe，solid brick masonry conforming to ASTM C62．
2．Allowable loads are calculated using an applied safety factor of 5．0．Consideration of safety factors of 10 or higher may be necessary depending on the application，such as ife safety or overhead．
3．The tabulated values are for anchors installed at a minimum of 12 anchor diameters on center for 100 percent capacity．Spacing distances may be reduced to 6 anchor diameters on center provided the capacities are reduces by 50 percent．Linear interpolation may be used for intermediate spacings
4．Anchors length shall be of suitable length for the
concrete masonry wall thickness and attachment．

Ultimate and Allowable Load Capacities for Lok－Bolt in Hollow or Solid Concrete Masonry ${ }^{1,2,3,4,5,6}$

Anchor Dia． d in． （mm）	Min． Embed． Depth h_{V} in． （mm）	Maximum Tightening Torque $T_{\text {max }}$ ft．－lbs．	Min． Edge Dist． in． （mm）	Min． End Dist． in． （mm）	$\boldsymbol{f}_{\boldsymbol{m}}^{\prime} \geq \mathbf{1 , 5 0 0}$ psi（10．4 MPa）			
					Ultimate Load		Allowable Load	
					Tension lbs． （kN）	Shear lbs． （kN）	Tension lbs． （kN）	Shear lbs． （kN）
$\begin{gathered} 1 / 4 \\ (6.4) \end{gathered}$	$\begin{gathered} 5 / 8 \\ (15.9) \\ \hline \end{gathered}$	1－3	$\begin{aligned} & \hline 33 / 4 \\ & (95.3) \\ & \hline \end{aligned}$	$\begin{aligned} & 33 / 4 \\ & (95.3) \\ & \hline \end{aligned}$	$\begin{gathered} 230 \\ (1.0) \end{gathered}$	$\begin{aligned} & 1,000 \\ & (4.5) \end{aligned}$	$\begin{gathered} 45 \\ (0.2) \end{gathered}$	$\begin{array}{r} 200 \\ (0.9) \end{array}$
	$\begin{aligned} & 11 / 8 \\ & (28.6) \end{aligned}$	1－3	$\begin{aligned} & 33 / 4 \\ & (95.3) \end{aligned}$	$\begin{gathered} 8 \\ (203.2) \end{gathered}$	$\begin{aligned} & 1,200 \\ & (5.4) \end{aligned}$	$\begin{aligned} & 1,270 \\ & (5.7) \end{aligned}$	$\begin{aligned} & \hline 240 \\ & (1.1) \end{aligned}$	$\begin{aligned} & 255 \\ & (1.1) \end{aligned}$
$\begin{aligned} & 5 / 16 \\ & (7.9) \end{aligned}$	$\begin{array}{r} 11 / 2 \\ (38.1) \\ \hline \end{array}$	4－6	$\begin{aligned} & \hline 33 / 4 \\ & (95.3) \\ & \hline \end{aligned}$	$\begin{gathered} 8 \\ (203.2) \\ \hline \end{gathered}$	$\begin{aligned} & 1,430 \\ & (6.4) \end{aligned}$	$\begin{aligned} & 1,970 \\ & (8.9) \\ & \hline \end{aligned}$	$\begin{aligned} & 285 \\ & (1.3) \end{aligned}$	$\begin{aligned} & 395 \\ & (1.8) \end{aligned}$
$\begin{array}{r} 3 / 8 \\ (9.5) \end{array}$	$\begin{aligned} & 11 / 2 \\ & (38.1) \\ & \hline \end{aligned}$	8－11	$\begin{gathered} 12 \\ (304.8) \\ \hline \end{gathered}$	$\begin{gathered} 12 \\ (304.8) \\ \hline \end{gathered}$	$\begin{aligned} & 1,700 \\ & (7.7) \end{aligned}$	$\begin{array}{r} 2,180 \\ (9.8) \\ \hline \end{array}$	$\begin{array}{r} 340 \\ (1.5) \end{array}$	$\begin{aligned} & \hline 435 \\ & (2.0) \end{aligned}$
$\begin{gathered} 1 / 2 \\ (12.7) \end{gathered}$	$\begin{aligned} & 11 / 2 \\ & (38.1) \end{aligned}$	16－20	$\begin{gathered} 12 \\ (304.8) \end{gathered}$	$\begin{gathered} 12 \\ (304.8) \\ \hline \end{gathered}$	$\begin{aligned} & 2,460 \\ & (11.1) \end{aligned}$	$\begin{aligned} & 2,840 \\ & (12.8) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 490 \\ & (2.2) \end{aligned}$	$\begin{aligned} & 570 \\ & (2.6) \end{aligned}$

Ultimate and Allowable Load Capacities for Lok－Bolt in Hollow or Solid Clay Brick Masonry

Anchor Dia． d in． （mm）	Min． Embed． Depth h_{V} in． （mm）	Maximum Tightening Torque $T_{\text {max }}$ ft．－lbs．	Min． Edge Dist． in． （mm）	Min． End Dist．in.(mm)	$\boldsymbol{f}_{\boldsymbol{m}}^{\prime} \geq \mathbf{1 , 5 0 0}$ psi（10．4 MPa）			
					Ultimate Load		Allowable Load	
					Tension lbs． （kN）	Shear lbs． （kN）	Tension lbs． （kN）	Shear lbs． （kN）
$\begin{gathered} 1 / 4 \\ (6.4) \end{gathered}$	$\begin{array}{r} 5 / 8 \\ (15.9) \\ \hline \end{array}$	1－3	$\begin{gathered} 4 \\ (101.6) \end{gathered}$	$\begin{gathered} 4 \\ (101.6) \end{gathered}$	$\begin{aligned} & \hline 800 \\ & (3.6) \end{aligned}$	$\begin{array}{r} 1,120 \\ (5.0) \\ \hline \end{array}$	$\begin{aligned} & 160 \\ & (0.7) \end{aligned}$	$\begin{aligned} & 225 \\ & (1.0) \end{aligned}$
	$\begin{array}{r} 11 / 8 \\ (28.6) \\ \hline \end{array}$	1－3			$\begin{aligned} & \hline 950 \\ & (4.3) \end{aligned}$	$\begin{aligned} & 1,120 \\ & (5.0) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 190 \\ (0.9) \\ \hline \end{gathered}$	$\begin{gathered} \hline 225 \\ (1.0) \\ \hline \end{gathered}$
$\begin{aligned} & 5 / 16 \\ & (7.9) \\ & \hline \end{aligned}$	$\begin{array}{r} 11 / 2 \\ (38.1) \\ \hline \end{array}$	4－6			$\begin{aligned} & 1,230 \\ & (5.5) \\ & \hline \end{aligned}$	$\begin{aligned} & 1,120 \\ & (5.0) \\ & \hline \end{aligned}$	$\begin{gathered} 245 \\ (1.1) \end{gathered}$	$\begin{gathered} 225 \\ (1.0) \\ \hline \end{gathered}$
$\begin{array}{r} 3 / 8 \\ (9.5) \\ \hline \end{array}$	$11 / 2$ （38．1）	8－11	$\begin{gathered} 8 \\ (203.2) \end{gathered}$	$\begin{gathered} 8 \\ (203.2) \end{gathered}$	$\begin{aligned} & \hline 1,860 \\ & (8.4) \end{aligned}$	$\begin{aligned} & 1,260 \\ & (5.7) \\ & \hline \end{aligned}$	$\begin{gathered} 370 \\ (1.7) \\ \hline \end{gathered}$	$\begin{gathered} \hline 250 \\ (1.1) \\ \hline \end{gathered}$
$\begin{gathered} 1 / 2 \\ (12.7) \end{gathered}$	$11 / 2$ (38.1)	16－20			$\begin{aligned} & \hline 3,520 \\ & (15.8) \end{aligned}$	$\begin{array}{r} 4,010 \\ (18.0) \end{array}$	$\begin{aligned} & \hline 705 \\ & (3.2) \end{aligned}$	$\begin{aligned} & \hline 800 \\ & (3.6) \end{aligned}$

DESIGN CRITERIA

Combined Loading

For anchors loaded in both shear and tension，the combination of loads should be proportioned as follows：

$$
\left(\frac{N_{u}}{N_{n}}\right)^{\frac{5}{3}}+\left(\frac{V_{u}}{V_{n}}\right)^{\frac{5}{3}} \leq 1 \quad \text { OR } \quad\left(\frac{N_{u}}{N_{n}}\right)+\left(\frac{V_{u}}{V_{n}}\right) \leq 1
$$

Where：$\quad N_{u}=$ Applied Service Tension Load
$N_{n}=$ Allowable Tension Load
$V_{u}=$ Applied Service Shear Load
$V_{n}=$ Allowable Shear Load

Load Adjustment Factors for Spacing and Edge Distances

Anchor Installed in Normal－Weight Concrete						
Anchor Dimension	Load Type	Critical Distance （Full Anchor Capacity）	Critical Load Factor	Minimum Distance （Reduced Capacity）	Minimum Load Factor	
Spacing（s）	Tension and Shear	$S_{c r}=3.0 h_{V}$	$F_{N}=F_{V}=1.0$	$S_{\min }=1.5 h_{V}$	$F_{N}=F_{V}=0.50$	
Edge Distance (c)	Tension	$c_{c r}=12 d$	$F_{N}=1.0$	$C_{\min }=5 d$	$F_{N}=0.70$	
	Shear	$c_{c r}=12 d$	$F_{V}=1.0$	$C_{\min }=5 d$	$F_{V}=0.45$	

Anchor Installed in Lightweight Concrete						
Anchor Dimension	Load Type	Critical Distance （Full Anchor Capacity）	Critical Load Factor	Minimum Distance （Reduced Capacity）	Minimum Load Factor	
Spacing（s）	Tension and Shear	$S_{c r}=3.0 h_{V}$	$F_{N}=F_{V}=1.0$	$S_{\min }=1.5 h_{V}$	$F_{N}=F_{V}=0.50$	
Edge Distance（c）	Tension	$C_{c r}=12 d$	$F_{N}=1.0$	$C_{m i n}=5 d$	$F_{N}=0.85$	
	Shear	$C_{c r}=12 d$	$F_{V}=1.0$	$C_{\min }=5 d$	$F_{V}=0.40$	

[^2]
DESIGN CRITERIA

Load Adjustment Factors for Normal-Weight Concrete

Spacing, Tension (F_{N}) \& Shear (F_{V})							
Dia. (in.)		1/4	5/16	3/8	1/2	5/8	3/4
h_{v} (in.))		$11 / 4$	$11 / 2$	2	21/2	$23 / 4$	3
$S_{\text {cr }}$ (in.)		$33 / 4$	$41 / 2$	6	$71 / 2$	$81 / 4$	9
$S_{\text {min }}$ (in.)		$17 / 8$	$21 / 4$	3	$33 / 4$	$41 / 8$	$41 / 2$
	$17 / 8$	0.50					
	21/4	0.56	0.50				
	3	0.80	0.67	0.50			
	33/4	1.00	0.83	0.63	0.50		
	4		0.89	0.67	0.53		
	4 1/8		0.92	0.69	0.55	0.50	
	$41 / 2$		1.00	0.75	0.60	0.55	0.50
	6			1.00	0.80	0.73	0.67
	71/2				1.00	0.91	0.83
	81/4					1.00	0.92
	9						1.00

Edge Distance, Tension (F_{N})							
Dia. (in.)		1/4	5/16	3/8	1/2	5/8	3/4
$C_{c r}$ (in.)		3	$33 / 4$	$41 / 2$	6	$71 / 2$	9
$C_{\text {min }}$ (in.)		$11 / 4$	$15 / 8$	$17 / 8$	$21 / 2$	$31 / 8$	$33 / 4$
Edge Distance, c (inches)	11/4	0.70					
	15/8	0.76	0.70				
	1718	0.81	0.74	0.70			
	21/2	0.91	0.83	0.77	0.70		
	3	1.00	0.90	0.83	0.74		
	$31 / 8$		0.91	0.84	0.75	0.70	
	33/4		1.00	0.91	0.81	0.74	0.70
	41/2			1.00	0.87	0.79	0.74
	6				1.00	0.90	0.81
	$71 / 2$					1.00	0.84
	9						1.00

Edge Distance, Shear (F_{V})							
Dia. (in.)		1/4	5/16	3/8	1/2	5/8	3/4
$C_{c r}$ (in.)		3	$33 / 4$	$41 / 2$	6	$71 / 2$	9
$C_{\text {min }}$ (in.)		$11 / 4$	$15 / 8$	$17 / 8$	$21 / 2$	$31 / 8$	$33 / 4$
気	11/4	0.45					
	$15 / 8$	0.57	0.45				
	1718	0.65	0.53	0.45			
	$21 / 2$	0.84	0.69	0.58	0.45		
	3	1.00	0.81	0.69	0.53		
	$31 / 8$		0.84	0.71	0.55	0.45	
	$33 / 4$		1.00	0.84	0.65	0.53	0.45
	$41 / 2$			1.00	0.76	0.62	0.53
	6				1.00	0.81	0.69
	$71 / 2$					1.00	0.84
	9						1.00

Notes: For anchors loaded in tension and shear, the critical spacing ($S_{c r}$) is equal to 3 embedment depths (3hy) at which the anchor achieves 100% of load. Minimum spacing $\left(S_{\text {min }}\right)$ is equal to 1.5 embedment depths ($1.5 h_{v}$) at which the anchor achieves 50%

Notes: For anchors loaded in tension, the critical edge distance $\left(\mathrm{C}_{\mathrm{cr}}\right)$ is equal to 12 anchor diameters (12d) at which the anchor achieves 100\% of load. Minimum edge distance ($c_{\text {min }}$) is equal to 5 anchor diameters (5d) at which the anchor achieves 70\% of load.

Notes: For anchors loaded in shear, the critical edge distance $\left(c_{c r}\right)$ is equal to 12 anchor diameters ($12 d$) at which the anchor achieves 100% of load. Minimum edge distance ($c_{\text {min }}$) is equal to 5 anchor diameters ($5 d$) at which the anchor achieves 45% of load.

DESIGN CRITERIA

Load Adjustment Factors for Lightweight Concrete

Spacing, Tension (F_{N}) \& Shear (F_{V})							
Dia. (in.)		1/4	5/16	3/8	1/2	5/8	3/4
h_{v} (in.)		$11 / 4$	$11 / 2$	2	$21 / 2$	$23 / 4$	3
$S_{\text {cr }}$ (in.)		$33 / 4$	$41 / 2$	6	$71 / 2$	$81 / 4$	9
$S_{\text {min }}$ (in.)		$17 / 8$	$21 / 4$	3	$33 / 4$	$41 / 8$	$41 / 2$
	$17 / 8$	0.50					
	$21 / 4$	0.56	0.50				
	3	0.80	0.67	0.50			
	$33 / 4$	1.00	0.83	0.63	0.50		
	4		0.89	0.67	0.53		
	$41 / 8$		0.92	0.69	0.55	0.50	
	$41 / 2$		1.00	0.75	0.60	0.55	0.50
	6			1.00	0.80	0.73	0.67
	$71 / 2$				1.00	0.91	0.83
	$81 / 4$					1.00	0.92
	9						1.00

Edge Distance, Tension (F_{N})							
Dia. (in.)		1/4	5/16	3/8	1/2	5/8	3/4
$C_{c r}$ (in.)		3	$33 / 4$	$41 / 2$	6	$71 / 2$	9
$C_{\text {min }}$ (in.)		$11 / 4$	$15 / 8$	$17 / 8$	$21 / 2$	$31 / 8$	$33 / 4$
Edge Distance, c (inches)	$11 / 4$	0.85					
	$15 / 8$	0.88	0.85				
	17/8	0.90	0.87	0.85			
	$21 / 2$	0.96	0.91	0.89	0.85		
	3	1.00	0.95	0.91	0.87		
	$31 / 8$		0.96	0.92	0.88	0.85	
	$33 / 4$		1.00	0.96	0.90	0.87	0.85
	$41 / 2$			1.00	0.94	0.90	0.87
	6				1.00	0.95	0.91
	$71 / 2$					1.00	0.92
	9						1.00

Edge Distance, Shear (Fv)							
Dia. (in.)		1/4	5/16	3/8	1/2	5/8	3/4
$C_{\text {cr }}$ (in.)		3	$33 / 4$	$41 / 2$	6	$71 / 2$	9
$C_{\text {min }}$ (in.)		$11 / 4$	$15 / 8$	$17 / 8$	$21 / 2$	$31 / 8$	$33 / 4$
Edge Distance, c (inches)	$11 / 4$	0.40					
	$15 / 8$	0.53	0.40				
	$17 / 8$	0.61	0.49	0.40			
	$21 / 2$	0.83	0.66	0.54	0.40		
	3	1.00	0.79	0.66	0.49		
	$31 / 8$		0.83	0.69	0.51	0.40	
	$33 / 4$		1.00	0.83	0.61	0.49	0.40
	$41 / 2$			1.00	0.74	0.59	0.49
	6				1.00	0.79	0.66
	$71 / 2$					1.00	0.83
	9						1.00

Notes: For anchors loaded in tension and shear, the critical spacing ($s_{\text {cr }}$) is equal to 3 embedment depths $\left(3 h_{V}\right)$ at which the anchor achieves 100% of load.
Minimum spacing ($s_{\text {min }}$) is equal to 1.5 embedment depths (1.5 h_{v}) at which the anchor achieves 50\% of Inad

Notes: For anchors loaded in tension, the critical edge distance ($c_{c r}$) is equal to 12 anchor diameters (12d) at which the anchor achieves 100\% of load. Minimum edge distance ($c_{\text {min }}$) is equal to 5 anchor diameters ($5 d$) at which the anchor achieves 85% of load.

Notes: For anchors loaded in shear, the critical edge distance $\left(c_{c r}\right)$ is equal to 12 anchor diameters (12 d) at which the anchor achieves 100% of load.
Minimum edge distance ($\mathrm{c}_{\mathrm{min}}$) is equal to 5 anchor diameters (5d) at which the anchor achieves 40\% of load.

ORDERING INFORMATION

Combo Flat Head Lok-Bolt

Catalog Number			Drill Diameter	Minimum Embed.	Standard Box	Standard Carton	Wt./ 100
Carbon	Stainless	Size	$1 / 4^{\prime \prime}$	$1^{\prime \prime}$	100	1,000	2
5305	-	$1 / 4^{\prime \prime} \times 11 / 8^{\prime \prime}$	$1 / 4^{\prime \prime}$	$11 / 8^{\prime \prime}$	100	1,000	$23 / 4$
5310	6170	$1 / 4^{\prime \prime} \times 2^{\prime \prime}$	$1 / 4^{\prime \prime}$	$11 / 8^{\prime \prime}$	100	1,000	$33 / 4$
5315	6172	$1 / 4^{\prime \prime} \times 3^{\prime \prime}$	$1 / 4^{\prime \prime}$	$11 / 8^{\prime \prime}$	100	500	$41 / 2$
5320	-	$1 / 4^{\prime \prime} \times 4^{\prime \prime}$	$1 / 4^{\prime \prime}$	$11 / 8^{\prime \prime}$	100	500	$61 / 2$
5325	-	$1 / 4^{\prime \prime} \times 51 / 4^{\prime \prime}$	$5 / 16^{\prime \prime}$	$11 / 2^{\prime \prime}$	100	1,000	$41 / 2$
5330	-	$5 / 16^{\prime \prime} \times 21 / 2^{\prime \prime}$	$3 / 8^{\prime \prime}$	$15 / 8^{\prime \prime}$	50	500	$71 / 2$
5340	-	$3 / 8^{\prime \prime} \times 23 / 4^{\prime \prime}$	$3 / 8^{\prime \prime}$	$15 / 8^{\prime \prime}$	50	250	$103 / 4$
5345	6174	$3 / 8^{\prime \prime} \times 4^{\prime \prime}$	$3 / 8^{\prime \prime}$	$15 / 8^{\prime \prime}$	50	250	14
5350	6175	$3 / 8^{\prime \prime} \times 5^{\prime \prime}$	$3 / 8^{\prime \prime}$	$15 / 8^{\prime \prime}$	50	250	16
5360	6176	$3 / 8^{\prime \prime} \times 6^{\prime \prime}$					

The published length is the minimum overall length of the anchor. Combo Flat Head Lok-Bolts do not have a compression ring.

Threshold Flat Head Lok-Bolt, Slotted

Catalog Number		Size	Drill Diameter	Minimum Embed.	Standard Box	Standard Carton	$\begin{gathered} \text { Wt./ } \\ 100 \end{gathered}$
Carbon	Stainless						
5500	-	1/4" x 2"	1/4"	1 1/8"	100	1,000	$21 / 2$

The published length is the minimum overall length of the anchor. Threshold Flat Head Lok-Bolts do not have a compression ring.

Rod Hanger Lok-Bolt

Catalog Number			Drill Carbon Stainless	Mizimum	Standard Embed.	Standard Box	Wt./I Carton
5810	-	$1 / 4^{\prime \prime} \times 11 / 2^{\prime \prime}$	$5 / 1^{\prime \prime}$	$11 / 2^{\prime \prime}$	50	250	$51 / 2$
5815	-	$3 / 8^{\prime \prime} \times 17 / 8^{\prime \prime}$	$3 / 8^{\prime \prime}$	$15 / 8^{\prime \prime}$	50	250	9
5825	-	$1 / 2^{\prime \prime} \times 21 / 4^{\prime \prime}$	$1 / 2^{\prime \prime}$	$21 / 4^{\prime \prime}$	25	125	21

The published length is measured from below the washer to the end of the anchor.
Rod Hanger Lok-Bolts do not have a compression ring.

Tie-Wire Lok-Bolt

Catalog Number		Size	Diameter	Minimum Embed.	Standard	Standard Carton	$\begin{aligned} & \text { Wt./I } \\ & 10 \end{aligned}$
Carbon	Stainless						
5700	-	5/16" $\times 1$ 1/2"	5/16"	1 1/2"	100	1,000	$51 / 4$

The published length is measured from below the head to the end of the anchor.

Lok-Bolt Extenders

Catalog Number			Drill	Minimum	Standard Box	Standard Carton	Wt./ 100
Carbon	Stainless	Size	Diameter	Embed.			
5684	5689	$3 / 8^{\prime \prime} \times 1^{\prime \prime}$	$3 / 8^{\prime \prime}$	$15 / 8^{\prime \prime}$	50	500	3

Extenders are used for added length on all head styles.

[^0]: 1. Allowable load capacities listed are calculated using an applied safety factor of 4.0. Consideration of safety factors of 10 or higher may be necessary depending on the application, such as life safety or overhead.
[^1]: 1. The values listed above are ultimate and allowable load capacities for anchors in sand-lightweight concrete over metal deck.
 2. Allowable loads capacities are calculated using an applied safety factor of 4.0. Consideration of safety factors of 10 or higher may be necessary depending on the application, such as life safety or overhead.
 3. Tabulated load values are for anchors installed in the center of the flute. Spacing distances shall be in accordance with the spacing lightweight concrete table listed in the Design Criteria section.
 4. Anchors are permitted to be installed in the lower or upper flute of the metal deck provided the proper installed procedures are maintained.
[^2]: ．Allowable load values found in the performance data tables are multiplied by reduction factors when anchor spacing or edge distances are less than critical distances．Linear interpolation is allowed for intermediate anchor spacing and edge distances between critical and minimum distances．When an anchor is affected by both reduced spacing and edge distance，the spacing and edge reduction factors must be combined（multiplied）．Multiple reduction factors for anchor spacing and edge distance may be required depending on the anchor group configuration．

