Tapper+ Concrete Screw Anchor

PRODUCT DESCRIPTION

The Tapper+ fastening system is a complete family of screw anchors for light to medium duty applications in concrete, masonry block, brick, and wood base materials. The Tapper+ is fast and easy to install and provides a neat, finished appearance. The Tapper+ screw anchor is engineered with matched tolerance drill bits and installation tools designed to meet the needs of the user and also provide optimum performance. The Tapper+ features a gimlet point for self-drilling into wood base materials without pre-drilling.
The Tapper+ screw anchor is available in carbon steel with a Perma-Seal climate coating in several colors. Head styles include a slotted hex washer head, Phillips flat head, trim Phillips flat head and Hex flange washer head.

GENERAL APPLICATIONS AND USES

- Window installations
- Interior hand rails
- Metal door frames
- Joint flashing
- Storm shutters
- Interior lighting fixtures
- Thresholds
- Screened Enclosures

FEATURES AND BENEFITS

+ Available in several head styles
+ Several colors and finishes to match application
+ Removable (reusable in wood)
+ High-low thread design for greater stability and grip
+ Does not exert expansion forces
+ No hole spotting required
+ Good corrosion protection with Perma-Seal coating
+ Gimlet point for self drilling into wood base material

APPROVALS

International Code Council, Evaluation Service (ICC-ES), ESR-3068 for uncracked concrete (including FBC supplement), ESR-3042 for wood, ESR-3213 for chemically treated lumber. Code compliant with the International Building Code (IBC) and the International Residential Code (IRC).
Tested in accordance with ACI 355.2 and ICC-ES AC193 (including ASTM E 488) for use in structural concrete, ICC- ES AC106 for use in masonry, ICC-ES AC233 for use in wood, and ICC-ES AC257 for use in pressure treated lumber
Evaluated and qualified by an accredited independent testing labortatory for reliability against brittle failure, e.g. hydrogen embrittlement
Miami-Dade County Notice of Acceptance (NOA) 10-0505.05

GUIDE SPECIFICATIONS

CSI Divisions: 031600 - Concrete Anchors, 040519.16 - Masonry Anchors, 050519 - Post-Installed Concrete Anchors and 060523 - Wood, Plastic, and Composite Fastenings. Concrete Screw Anchors shall be Tapper+ anchors as supplied by Powers Fasteners, Inc., Brewster, NY.

MATERIAL SPECIFICATIONS

Anchor Component	Perma-Seal Tapper
Anchor Body	Case hardened carbon steel
Coating/Plating/Finish	Perma-seal coating (various colors)

SECTION CONTENTS Page No.
General Information 1
Installation Specifications 2
ASD Installation Specifications. 3
Reference Performance Data 4
ASD Design Criteria 5
Masonry Performance Data 6
Strength Design Information 9
SD Performance Data 12
Ordering Information 13

ANCHOR MATERIALS

Carbon Steel with Perma-Seal Coating

ANCHOR SIZE RANGE (TYP.)

$3 / 16^{\prime \prime}$ diameter $\times 1-1 / 4^{\prime \prime}$ to $4^{\prime \prime}$ lengths $1 / 4^{\prime \prime}$ diameter $\times 1-1 / 4^{\prime \prime}$ to $6^{\prime \prime}$ lengths $5 / 16^{\prime \prime}$ diameter $\times 1-3 / 4^{\prime \prime}$ to $6^{\prime \prime}$ lengths

SUITABLE BASE MATERIALS

Normal-weight Concrete
Lightweight Concrete
Grouted Concrete Masonry,
Hollow Concrete Masonry (CMU)
Solid Brick Masonry
Wood

This Product Available In

Powers Design Assist Real Time Anchor Design Software www.powersdesignassist.com

INSTALLATION SPECIFICATIONS

Perma-Seal Carbon Steel Hex Head Tapper+

Dimension	Anchor Diameter, d		
	$\mathbf{3 / 1 6} 6^{\prime \prime}$	$\mathbf{1 / 4} \mathbf{"}^{\prime \prime}$	$\mathbf{5 / 1 6 ^ { \prime \prime }}$
Tapper+ Drill Bit Size, $d_{\text {bit }}$ (in.)	$5 / 32^{\prime \prime}$	$3 / 16^{\prime \prime}$	$1 / 4^{\prime \prime}$
Fixture Clearance Hole, d_{h} (in.)	$1 / 4^{\prime \prime}$	$5 / 16^{\prime \prime}$	$5 / 16^{\prime \prime}$
Head Height (in.)	$7 / 64^{\prime \prime}$	$9 / 64^{\prime \prime}$	$1 / 4^{\prime \prime}$
Hex Head Wrench/Socket Size	$1 / 4^{\prime \prime}$	$5 / 16^{\prime \prime}$	$5 / 16^{\prime \prime}$
Washer O.D., d_{w} (in.)	$11 / 32^{\prime \prime}$	$13 / 32^{\prime \prime}$	$9 / 16^{\prime \prime}$
Washer Thickness, (in.)	$1 / 32^{\prime \prime}$	$1 / 32^{\prime \prime}$	$1 / 16^{\prime \prime}$

Installation Procedure

1.) Using the proper Tapper+ drill bit size, drill a hole into the base material to the required depth. The tolerances of the Tapper+ bit used must meet the requirements of the published range in Table 1.

2.) Remove dust and debris from hole using a hand pump, compressed air or a vacuum to remove loose particles left from drilling.

Note: Step \#1 and \#2 not applicable for wood base materials, drill bit not applicable for wood base materials.

Perma-Seal Carbon Steel Flat Head Tapper+

Dimension	Anchor Diameter, \boldsymbol{d}		
	$\mathbf{3 / 1 6 \prime \prime}$	$\mathbf{1 / 4} \mathbf{"}^{\prime \prime}$	$\mathbf{5 / 1 6 "}$
Tapper+ Drill Bit Size, $d_{\text {bit }}$ (in.)	$5 / 32^{\prime \prime}$	$3 / 16^{\prime \prime}$	$1 / 4^{\prime \prime}$
Fixture Clearance Hole, d_{h} (in.)	$1 / 4^{\prime \prime}$	$5 / 16^{\prime \prime}$	$5 / 16^{\prime \prime}$
Phillips Head O.D., (in.)	$3 / 8^{\prime \prime}$	$1 / 2^{\prime \prime}$	$9 / 16^{\prime \prime}$
Phillips Head Height, (in.)	$9 / 64^{\prime \prime}$	$3 / 16^{\prime \prime}$	$9 / 32^{\prime \prime}$
Phillips Bit Size (No.)	2	3	3

3.) For $3 / 16^{\prime \prime}$ and $1 / 4^{\prime \prime}$ sizes, attach a Tapper 1000 installation socket tool for the selected anchor size to a percussion drill and set the drill to rotary only mode. Mount the screw anchor head into the socket. For flat head versions a phillips bit tip must be used with the socket tool.

For the $5 / 16^{\prime \prime}$ size, select a powered impact wrench that does not exceed the maxumum torque, $\mathrm{T}_{\text {screw, }}$ for the selected anchor diameter. Attach an appropriate sized hex socket or phillips bit to the impact wrench. Mount the screw anchor head into the socket or phillips bit.

4.) For $3 / 16^{\prime \prime}$ and $1 / 4^{\prime \prime}$ sizes, place the point of the Tapper+ anchor through the fixture into the predrilled hole and drive the anchor until it is fully seated at the proper embedment. The socket tool will automatically disengage from the head of the Tapper+.

For the $5 / 16^{\prime \prime}$ size, drive the anchor with an impact wrench through the fixture and into the hole until the head of the anchor comes into contact with the fixture. The anchor must be snug after installation. Do not spin the hex socket or phillips bit off the anchor to disengage.

Head Marking

Legend
'P' Marking = Powers Tapper +
' + ' Symbol = Strength Design Compliant Anchor Length Identification Mark
$\star=5 / 16^{\prime \prime}$ Diameter Identification mark

Tapper+ Length Code Identification System

Length ID marking on head		\square	A	B	C	D	E	F	G	H	1	J
Overall anchor length $\ell_{\text {anch }}$ (inches)	From	1	1-1/2	2	2-1/2	3	3-1/2	4	4-1/2	5	5-1/2	6
	Up to but not including	1-1/2	2	2-1/2	3	3-1/2	4	4-1/2	5	5-1/2	6	6-1/2

FASTENERS

INSTALLATION SPECIFICATIONS

Installation Table for Tapper+ in Concrete

Anchor Property/Setting Information	Notation	Units	Nominal Anchor Size (in.)		
			3/16	1/4	5/16
Anchor outside diameter	d	$\begin{gathered} \text { in. } \\ (\mathrm{mm}) \end{gathered}$	$\begin{aligned} & 0.145 \\ & (3.7) \end{aligned}$	$\begin{aligned} & 0.185 \\ & (4.7) \end{aligned}$	$\begin{gathered} 0.250 \\ (6.4) \end{gathered}$
Nominal drill bit diameter	$d_{\text {bit }}$	$\begin{gathered} \mathrm{in} . \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} 3 / 16 \\ \text { Tapper+ Bit } \end{gathered}$	$\begin{gathered} 1 / 4 \\ \text { Tapper+ Bit } \end{gathered}$	$\begin{gathered} 5 / 16 \\ \text { Tapper+ Bit } \end{gathered}$
Tapper+ bit tolerance range	-	in.	$\begin{gathered} 0.170 \\ \text { to } \\ 0.176 \end{gathered}$	$\begin{gathered} 0.202 \\ \text { to } \\ 0.207 \end{gathered}$	$\begin{gathered} 0.255 \\ \text { to } \\ 0.259 \end{gathered}$
Minimum embedment depth	h_{v}	$\begin{gathered} \text { in. } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} 1-3 / 4 \\ (44.4) \end{gathered}$	$\begin{gathered} 1-3 / 4 \\ (44.4) \end{gathered}$	$\begin{gathered} 1-7 / 8 \\ (47.6) \end{gathered}$
Minimum hole depth	h_{0}	$\begin{gathered} \mathrm{in} . \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} 2 \\ (50.8) \end{gathered}$	$\begin{gathered} 2 \\ (50.8) \end{gathered}$	$\begin{gathered} 2-1 / 4 \\ (57) \end{gathered}$
Hex Head Socket Size	.	-	1/4	5/16	5/16
Phillips Bit Size	.	-	2	3	3
Max Impact Wrench Power	$T_{\text {screw }}$	$\begin{aligned} & \text { ft-lbs } \\ & (\mathrm{N}-\mathrm{m}) \end{aligned}$	-	-	$\begin{gathered} 115 \\ (150) \end{gathered}$

For SI: 1 inch $=25.4 \mathrm{~mm}, 1 \mathrm{ft}-\mathrm{lbf}=1.356 \mathrm{~N}-\mathrm{m}$.
Installation Table for Tapper+ in Masonry

Anchor Property/Setting Information	Notation	Units	Nominal Anchor Size (in.)		
			3/16	1/4	5/16
Anchor outside diameter	d	$\begin{gathered} \text { in. } \\ (\mathrm{mm}) \end{gathered}$	$\begin{aligned} & 0.145 \\ & (3.2) \end{aligned}$	$\begin{aligned} & 0.185 \\ & (4.7) \end{aligned}$	$\begin{aligned} & 0.250 \\ & (6.4) \end{aligned}$
Nominal drill bit diameter	$d_{\text {bit }}$	$\begin{gathered} \text { in. } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} 3 / 16 \\ \text { Tapper+ Bit } \end{gathered}$	$\begin{gathered} 1 / 4 \\ \text { Tapper+ Bit } \end{gathered}$	$\begin{gathered} 5 / 16 \\ \text { Tapper+ Bit } \end{gathered}$
Tapper+ bit tolerance range	-	in.	$\begin{gathered} 0.170 \\ \text { to } \\ 0.176 \\ \hline \end{gathered}$	$\begin{gathered} 0.202 \\ \text { to } \\ 0.207 \\ \hline \end{gathered}$	$\begin{gathered} 0.255 \\ \text { to } \\ 0.259 \end{gathered}$
Minimum embedment depth (Grout Filled Masonry)	h_{v}	$\begin{gathered} \hline \text { in. } \\ (\mathrm{mm}) \end{gathered}$	$\begin{array}{r} 1-1 / 2 \\ (38.1) \end{array}$	$\begin{gathered} 1-1 / 2 \\ (38.1) \end{gathered}$	$\begin{aligned} & 2-1 / 2 \\ & (63.5) \end{aligned}$
Minimum hole depth (Grout Filled Masonry)	h_{0}	$\begin{gathered} \text { in. } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} 1-3 / 4 \\ (44.4) \end{gathered}$	$\begin{gathered} 1-3 / 4 \\ (44.4) \end{gathered}$	$\begin{gathered} 2-3 / 4 \\ (69.9) \end{gathered}$
Minimum embedment depth (Hollow Masonry)	h_{v}	$\begin{gathered} \text { in. } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} 1 \\ (25.4) \end{gathered}$	$\begin{gathered} 1 \\ (25.4) \end{gathered}$	$\begin{gathered} 1-1 / 2 \\ (38.1) \end{gathered}$
Minimum hole depth (Hollow Masonry)	h_{0}	$\begin{gathered} \mathrm{in} . \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} 1-1 / 4 \\ (31.8) \end{gathered}$	$\begin{gathered} 1-1 / 4 \\ (31.8) \end{gathered}$	$\begin{gathered} 1-3 / 4 \\ (44.5) \end{gathered}$
Hex Head Socket Size	.	.	1/4	5/16	5/16
Phillips Bit Size	.	.	2	3	3

Installation Table for Tapper+ in Wood

Anchor Property/Setting Information	Notation	Units	Nominal Anchor Size (in.)	
			3/16	1/4
Anchor outside diameter	d	$\begin{gathered} \text { in. } \\ \text { (mm) } \end{gathered}$	$\begin{aligned} & 0.145 \\ & (3.7) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.185 \\ & (4.7) \end{aligned}$
Nominal drill bit diameter	$d_{\text {bit }}$	$\begin{aligned} & \text { in. } \\ & (\mathrm{mm}) \end{aligned}$	Pre-drilling is not required for Tapper+ into wood	
Hex Head Socket Size	.	.	1/4	5/16
Phillips Bit Size	.	.	2	3

Tapper+ Anchor Detail

(Slotted hex head version pictured, flat head length measured from bottom of head to tip of anchor)

REFERENCE PERFORMANCE DATA

Ultimate Load Capacities for Tapper+ in Normal-Weight Concrete ${ }^{1,2}$

NominalAnchorDiameterdin.	$\begin{aligned} & \text { Minimum } \\ & \text { Embedment } \\ & \text { Depth } \\ & \text { in. } \\ & (\mathrm{mm}) \end{aligned}$	Minimum Concrete Compressive Strength									
		$\mathrm{f}^{\prime} \mathrm{c}=2,500 \mathrm{psi}(17.3 \mathrm{MPa})$		$\mathrm{f}^{\prime} \mathrm{c}=3,000 \mathrm{psi}(20.7 \mathrm{MPa})$		$\mathrm{f}^{\prime} \mathrm{C}=4,000 \mathrm{psi}(27.6 \mathrm{MPa})$		$\mathrm{f}^{\prime} \mathrm{C}=6,000 \mathrm{psi}(41.4 \mathrm{MPa})$		$\mathrm{f}^{\prime} \mathrm{c}=8,000 \mathrm{psi}(55.2 \mathrm{MPa})$	
		Tension lbs. (kN)	Shear lbs. (kN)	Tension lbs. (kN)	Shear lbs. (kN)	Tension lbs. (kN)	Shear lbs. (kN)	Tension lbs. (kN)	Shear lbs. (kN)	Tension lbs. (kN)	Shear lbs. (kN)
3/16	$\begin{aligned} & 1-3 / 4 \\ & (44.4) \end{aligned}$	$\begin{aligned} & 1,240 \\ & (5.5) \end{aligned}$	$\begin{aligned} & \hline 985 \\ & (4.4) \end{aligned}$	$\begin{aligned} & 1,310 \\ & (5.8) \end{aligned}$	$\begin{aligned} & 985 \\ & (4.4) \end{aligned}$	$\begin{aligned} & 1,430 \\ & (6.4) \end{aligned}$	$\begin{aligned} & 985 \\ & (4.4) \end{aligned}$	$\begin{aligned} & 1,615 \\ & (7.2) \end{aligned}$	$\begin{aligned} & \hline 985 \\ & (4.4) \end{aligned}$	$\begin{aligned} & 1,760 \\ & (7.8) \end{aligned}$	$\begin{aligned} & \hline 985 \\ & (4.4) \end{aligned}$
1/4	$\begin{array}{r} 1-3 / 4 \\ (44.4) \end{array}$	$\begin{aligned} & 1,855 \\ & (8.3) \end{aligned}$	$\begin{aligned} & 1,500 \\ & (6.7) \end{aligned}$	$\begin{aligned} & 1,995 \\ & (8.9) \end{aligned}$	$\begin{aligned} & 1,500 \\ & (6.7) \end{aligned}$	$\begin{aligned} & 2,235 \\ & (10.0) \end{aligned}$	$\begin{aligned} & 1,500 \\ & (6.7) \end{aligned}$	$\begin{aligned} & 2,630 \\ & (11.7) \end{aligned}$	$\begin{aligned} & 1,500 \\ & (6.7) \end{aligned}$	$\begin{aligned} & 2,995 \\ & (13.3) \end{aligned}$	$\begin{aligned} & 1,500 \\ & (6.7) \end{aligned}$
5/16	$\begin{aligned} & 1-3 / 4 \\ & (49.2) \end{aligned}$	$\begin{aligned} & 2,520 \\ & (11.2) \end{aligned}$	$\begin{aligned} & 2,000 \\ & (8.9) \end{aligned}$	$\begin{aligned} & 2,760 \\ & (12.3) \end{aligned}$	$\begin{aligned} & 2,000 \\ & (8.9) \end{aligned}$	$\begin{aligned} & 3,185 \\ & (14.2) \end{aligned}$	$\begin{aligned} & 2,720 \\ & (12.1) \end{aligned}$	$\begin{aligned} & 3,350 \\ & (14.9) \end{aligned}$	$\begin{aligned} & 2,720 \\ & (12.1) \end{aligned}$	$\begin{aligned} & 3,625 \\ & (16.1) \end{aligned}$	$\begin{aligned} & 2,720 \\ & (12.1) \end{aligned}$
	$\begin{aligned} & 2-1 / 2 \\ & (63.5) \end{aligned}$	$\begin{aligned} & 3,365 \\ & (15.0) \end{aligned}$	$\begin{aligned} & \hline 2,000 \\ & (8.9) \end{aligned}$	$\begin{aligned} & 3,625 \\ & (16.1) \end{aligned}$	$\begin{aligned} & \hline 2,000 \\ & (8.9) \end{aligned}$	$\begin{array}{r} 3,625 \\ (16.1) \\ \hline \end{array}$	$\begin{aligned} & 2,720 \\ & (12.1) \\ & \hline \end{aligned}$	$\begin{aligned} & 3,625 \\ & (16.1) \end{aligned}$	$\begin{array}{r} 2,720 \\ (12.1) \\ \hline \end{array}$	$\begin{aligned} & 3,625 \\ & (16.1) \end{aligned}$	$\begin{array}{r} 2,720 \\ (12.1) \\ \hline \end{array}$
	$\begin{gathered} 3 \\ (76.2) \end{gathered}$	$\begin{aligned} & 3,780 \\ & (16.8) \end{aligned}$	$\begin{aligned} & \hline 2,000 \\ & (8.9) \end{aligned}$	$\begin{aligned} & 3,780 \\ & (16.8) \end{aligned}$	$\begin{aligned} & 2,000 \\ & (8.9) \end{aligned}$	$\begin{aligned} & 3,780 \\ & (16.8) \end{aligned}$	$\begin{aligned} & 2,720 \\ & (12.1) \end{aligned}$	$\begin{aligned} & 3,780 \\ & (16.8) \end{aligned}$	$\begin{aligned} & 2,720 \\ & (12.1) \end{aligned}$	$\begin{aligned} & 3,780 \\ & (16.8) \end{aligned}$	$\begin{aligned} & 2,720 \\ & (12.1) \end{aligned}$

1. Tabulated load values are for anchors installed in concrete. Concrete compressive strength must be at the specified minimum at the time of installation.
2. Ultimate load capacities must be reduced by a minimum safety factor of 4.0 or greater to determine allowable working load.

Allowable Load Capacities for Tapper+ in Normal-Weight Concrete ${ }^{1,2,3}$

Nominal Anchor Diameter d in.	Minimum Embedment Depth in. (mm)	Minimum Concrete Compressive Strength									
		$\mathrm{f}^{\prime} \mathrm{c}=2,500 \mathrm{psi}(17.3 \mathrm{MPa})$		$\mathrm{f}^{\prime} \mathrm{c}=3,000 \mathrm{psi}(20.7 \mathrm{MPa})$		$\mathrm{f}^{\prime} \mathrm{c}=4,000 \mathrm{psi}(27.6 \mathrm{MPa})$		$\mathrm{f}^{\prime} \mathrm{c}=6,000 \mathrm{psi}(41.4 \mathrm{MPa})$		$\mathrm{f}^{\prime} \mathrm{C}=8,000 \mathrm{psi}(55.2 \mathrm{MPa})$	
		$\begin{gathered} \text { Tension } \\ \text { lbs. } \\ \text { (kN) } \end{gathered}$	Shear lbs. (kN)	Tension lbs. (kN)	Shear lbs. (kN)	Tension lbs. (kN)	Shear lbs. (kN)	Tension lbs. (kN)	Shear lbs. (kN)	$\begin{gathered} \text { Tension } \\ \text { lbs. } \\ \text { (kN) } \end{gathered}$	Shear lbs. (kN)
3/16	$\begin{array}{r} 1-3 / 4 \\ (44.4) \end{array}$	$\begin{aligned} & 310 \\ & (1.4) \end{aligned}$	$\begin{aligned} & 245 \\ & (1.1) \end{aligned}$	$\begin{aligned} & 325 \\ & (1.4) \end{aligned}$	$\begin{aligned} & 245 \\ & (1.1) \end{aligned}$	$\begin{aligned} & 360 \\ & (1.6) \end{aligned}$	$\begin{aligned} & 245 \\ & (1.1) \end{aligned}$	$\begin{aligned} & 400 \\ & (1.8) \end{aligned}$	$\begin{aligned} & 245 \\ & (1.1) \end{aligned}$	$\begin{aligned} & 440 \\ & (2.0) \end{aligned}$	$\begin{aligned} & 245 \\ & (1.1) \end{aligned}$
1/4	$\begin{array}{r} 1-3 / 4 \\ (44.4) \\ \hline \end{array}$	$\begin{array}{r} \hline 460 \\ (2.0) \\ \hline \end{array}$	$\begin{array}{r} 375 \\ (1.7) \\ \hline \end{array}$	$\begin{aligned} & 495 \\ & (2.2) \\ & \hline \end{aligned}$	$\begin{array}{r} 375 \\ (1.7) \\ \hline \end{array}$	$\begin{gathered} \hline 555 \\ (2.5) \\ \hline \end{gathered}$	$\begin{gathered} \hline 375 \\ (1.7) \\ \hline \end{gathered}$	$\begin{array}{r} \hline 655 \\ (2.9) \\ \hline \end{array}$	$\begin{gathered} \hline 375 \\ (1.7) \\ \hline \end{gathered}$	$\begin{aligned} & 750 \\ & (3.3) \\ & \hline \end{aligned}$	$\begin{gathered} 375 \\ (1.7) \\ \hline \end{gathered}$
5/16	$\begin{array}{r} 1-3 / 4 \\ (49.2) \end{array}$	$\begin{aligned} & 630 \\ & (2.8) \end{aligned}$	$\begin{gathered} 500 \\ (2.2) \end{gathered}$	$\begin{aligned} & 690 \\ & (3.1) \end{aligned}$	$\begin{gathered} 500 \\ (2.2) \end{gathered}$	$\begin{aligned} & 795 \\ & (3.5) \end{aligned}$	$\begin{aligned} & 680 \\ & (3.0) \end{aligned}$	$\begin{aligned} & 840 \\ & (3.7) \end{aligned}$	$\begin{aligned} & 680 \\ & (3.0) \end{aligned}$	$\begin{gathered} 905 \\ (4.0) \end{gathered}$	$\begin{gathered} 680 \\ (3.0) \end{gathered}$
	$\begin{array}{r} 2-1 / 2 \\ (63.5) \end{array}$	$\begin{aligned} & 840 \\ & (3.7) \end{aligned}$	$\begin{aligned} & 500 \\ & (2.2) \end{aligned}$	$\begin{array}{r} 905 \\ (4.0) \end{array}$	$\begin{gathered} 500 \\ (2.2) \end{gathered}$	$\begin{aligned} & 905 \\ & (4.0) \end{aligned}$	$\begin{gathered} 680 \\ (3.0) \end{gathered}$	$\begin{aligned} & 905 \\ & (4.0) \end{aligned}$	$\begin{aligned} & 680 \\ & (3.0) \end{aligned}$	$\begin{aligned} & 905 \\ & (4.0) \end{aligned}$	$\begin{gathered} 680 \\ (3.0) \end{gathered}$
	$\begin{gathered} 3 \\ (76.2) \end{gathered}$	$\begin{aligned} & 945 \\ & (4.2) \end{aligned}$	$\begin{aligned} & 500 \\ & (2.2) \\ & \hline \end{aligned}$	$\begin{aligned} & 945 \\ & (4.2) \end{aligned}$	$\begin{aligned} & 500 \\ & (2.2) \\ & \hline \end{aligned}$	$\begin{aligned} & 945 \\ & (4.2) \end{aligned}$	$\begin{gathered} 680 \\ (3.0) \end{gathered}$	$\begin{aligned} & 945 \\ & (4.2) \end{aligned}$	$\begin{aligned} & \hline 680 \\ & (3.0) \\ & \hline \end{aligned}$	$\begin{aligned} & 945 \\ & (4.2) \end{aligned}$	$\begin{gathered} 680 \\ (3.0) \end{gathered}$

[^0]Spacing Reduction Factors -Tension (F_{Ns})

Diameter (in)		3/16	1/4	5/16
Critical Spacing $\mathrm{Scr}_{\text {cr }}$ (in)		3.69	3.69	3.30
Minimum Spacing		1	2	2
Min. Slab Thickness $\mathrm{h}_{\text {min }}$ (in)		3-1/4	3-1/4	3-1/4
Minimum Embedment h_{v} (in)		1-3/4	1-3/4	1-7/8
	3/4	-	-	-
	1	0.68	-	-
	1-1/4	0.71	-	-
	1-1/2	0.74	-	-
	1-3/4	0.77	-	-
	2	0.80	0.80	0.83
	2-1/4	0.83	0.83	0.86
	2-1/2	0.86	0.86	0.89
	2-3/4	0.89	0.89	0.93
	3	0.92	0.92	0.96
	3-1/2	0.98	0.98	1.00
	4	1.00	1.00	1.00

Edge Distance Reduction Factors- Tension (F_{NC})

Diameter (in)		3/16	1/4	5/16
Critical Edge Distance $\mathrm{c}_{\text {cr }}$ (in)		3	3	2-1/2
Minimum Edge Distance $\mathrm{cmin}^{\text {(in) }}$		1-3/4	1-3/4	1-1/2
Min. Slab Thickness $\mathrm{h}_{\text {min }}$ (in)		3-1/4	3-1/4	3-1/4
Minimum Embedment h_{v} (in)		1-3/4	1-3/4	1-7/8
	1-1/4	-	-	-
	1-1/2	-	-	0.60
	1-3/4	0.58	0.58	0.70
	2	0.67	0.67	0.80
	2-1/4	0.75	0.75	0.90
	2-1/2	0.83	0.83	1.00
	2-3/4	0.92	0.92	1.00
	3	1.00	1.00	1.00

Edge Distance Reduction Factors -Shear (F_{vc})

Diameter (in)		3/16	1/4	5/16
Critical Edge Distance $c_{\text {cr }}$ (in)		3.7	3.7	3.3
Minimum Edge Distance $\mathrm{c}_{\text {min }}$ (in)		1-3/4	1-3/4	1-1/2
Min. Slab Thickness $\mathrm{h}_{\text {min }}$ (in)		3-1/4	3-1/4	3-1/4
Minimum Embedment h_{v} (in)		1-3/4	1-3/4	1-7/8
	1-1/4	-	-	-
	1-1/2	-	-	0.45
	1-3/4	0.47	0.47	0.53
	2	0.54	0.54	0.61
	2-1/4	0.61	0.61	0.68
	2-1/2	0.68	0.68	0.76
	2-3/4	0.75	0.75	0.83
	3	0.81	0.81	0.91
	3-1/2	0.95	0.95	1.00
	4	1.00	1.00	1.00

MASONRY PERFORMANCE DATA

Ultimate and Allowable Load Capacities for Tapper+ Anchors Installed into the Face of Hollow
 Concrete Masonry ${ }^{1,2,3}$

Nominal Anchor Diameter in.	Minimum Embed. h_{v} in.(mm)	Minimum Edge Distance in. (mm)	Minimum End Distance in. (mm)	ASTM C-90 Block Type	Ultimate Loads		Allowable Loads	
					Tension lbs (kN)	Shear lbs (kN)	Tension lbs (kN)	Shear lbs (kN)
3/16	$\begin{gathered} 1 \\ (25.4) \end{gathered}$	$\begin{gathered} 2 \\ (50.8) \end{gathered}$	$\stackrel{2}{(50.8)}$	Lightweight ${ }^{4}$	$\begin{gathered} 340 \\ (1.5) \end{gathered}$	$\begin{aligned} & 460 \\ & (2.1) \end{aligned}$	$\begin{gathered} 65 \\ (0.3) \end{gathered}$	$\begin{gathered} 90 \\ (0.4) \end{gathered}$
	$\begin{gathered} 1 \\ (25.4) \end{gathered}$	$\begin{gathered} 3 \\ (76.2) \end{gathered}$	$\begin{gathered} 3 \\ (76.2) \end{gathered}$	Lightweight ${ }^{4}$	$\begin{aligned} & 440 \\ & (2.0) \end{aligned}$	$\begin{aligned} & 670 \\ & \text { (3.0) } \end{aligned}$	$\begin{gathered} 90 \\ (0.4) \end{gathered}$	$\begin{gathered} 135 \\ (0.6) \end{gathered}$
	$\begin{gathered} 1-1 / 4 \\ (31.8) \end{gathered}$	$\begin{gathered} 2 \\ (50.8) \end{gathered}$	$\begin{gathered} 2 \\ (50.8) \end{gathered}$	Normal Weight ${ }^{5}$	$\begin{aligned} & 575 \\ & (2.6) \end{aligned}$	$\begin{aligned} & 700 \\ & (3.1) \end{aligned}$	$\begin{aligned} & 115 \\ & (0.5) \end{aligned}$	$\begin{gathered} 140 \\ (0.6) \end{gathered}$
1/4	$\begin{gathered} 1 \\ (25.4) \end{gathered}$	$\begin{gathered} 2 \\ (50.8) \end{gathered}$	$\begin{gathered} 2 \\ (50.8) \end{gathered}$	Lightweight ${ }^{4}$	$\begin{aligned} & 495 \\ & (2.2) \end{aligned}$	$\begin{aligned} & 530 \\ & (2.4) \end{aligned}$	$\begin{gathered} 100 \\ (0.4) \end{gathered}$	$\begin{gathered} 90 \\ (0.4) \end{gathered}$
	$\begin{gathered} 1 \\ (25.4) \end{gathered}$	$\begin{gathered} 3 \\ (76.2) \end{gathered}$	$\begin{gathered} 3 \\ (76.2) \end{gathered}$	Lightweight ${ }^{4}$	$\begin{aligned} & 580 \\ & (2.6) \end{aligned}$	$\begin{aligned} & 820 \\ & (3.6) \end{aligned}$	$\begin{aligned} & 115 \\ & (0.5) \end{aligned}$	$\begin{aligned} & 165 \\ & (0.7) \end{aligned}$
	$\begin{gathered} 1-1 / 4 \\ (31.8) \end{gathered}$	$\begin{gathered} 2^{2} \\ (50.8) \end{gathered}$	$\begin{gathered} { }^{2} \\ (50.8) \end{gathered}$	Normal Weight ${ }^{6}$	$\begin{gathered} 950 \\ (4.2) \end{gathered}$	$\begin{aligned} & 740 \\ & (3.3) \end{aligned}$	$\begin{gathered} 190 \\ (0.8) \end{gathered}$	$\begin{aligned} & 150 \\ & (0.7) \end{aligned}$
5/16	$\begin{aligned} & 1-1 / 4 \\ & (31.8) \end{aligned}$	$\begin{gathered} 2 \\ (50.8) \end{gathered}$	$\begin{gathered} 2 \\ (50.8) \end{gathered}$	Lightweight 7.8	$\begin{aligned} & \hline 930 \\ & (4.1) \end{aligned}$	$\begin{aligned} & 1,290 \\ & (5.7) \end{aligned}$	$\begin{gathered} \hline 185 \\ (0.8) \end{gathered}$	$\begin{aligned} & 260 \\ & (1.2) \end{aligned}$
		$\begin{gathered} 2 \\ (50.8) \end{gathered}$	$\begin{gathered} 2 \\ (50.8) \end{gathered}$	Normal Weight ${ }^{7}$	$\begin{aligned} & 1,005 \\ & (4.5) \end{aligned}$	$\begin{aligned} & 1,035 \\ & (4.6) \end{aligned}$	$\begin{aligned} & 200 \\ & (0.9) \end{aligned}$	$\begin{aligned} & 205 \\ & (0.9) \end{aligned}$

1. Tabulated load values are for anchors installed in minimum 8" wide, Grade N, Type II, light weight or normal weight concrete masonry units
conforming to ASTM C 90 that have reached the minimum designated ultimate compressive strength at the time of installation
($f^{\prime} m \geq 1,700 \mathrm{psi}$).
2. Allowable load capacities listed are calculated using an applied safety factor of 5.0. Consideration of safety factors of 10 or higher may be necessary depending on the application, such as life safety or overhead.
3. Allowable shear loads into the face shell of a masonry wall may be applied in any direction.
4. The tabulated values for the $3 / 16$-inch and $1 / 4$-inch diameter Tapper+ in light weight block are applicable for anchors installed at a critical spacing between anchors of 16 times the anchor diameter. The anchors may be reduced to a minimum spacing distance of 8 times the anchor diameter provided the allowable tension loads are reduced by 12 percent. Allowable shear loads do not need to be reduced.
5. The tabulated values for the $3 / 16$-inch diameter Tapper+ in normal weight block are applicable for anchors installed at a critical spacing between anchors of 8 times the anchor diameter.
6. The tabulated values for the $1 / 4$-inch Tapper+ in normal weight block are applicable for anchors installed at a critical spacing between anchors of 16 times the anchor diameter. The anchors may be reduced to a minimum spacing distance of 8 times the anchor diameter provided the allowable tension loads are reduced by 20 percent. Allowable shear loads do not need to be reduced.
7. The tabulated values for the $5 / 16$-inch Tapper+ in lightweight and normal weight block are applicable for anchors installed at a critical
 spacing between anchors of 16 times the anchor diameter.
8. The tabulated tension value for the $5 / 16^{\prime \prime}$ Tapper+ in lightweight block may be increased by 30% if drilling method is rotation only.

Ultimate and Allowable Load Capacities for Tapper+ Anchors Installed into the Face of Grout Filled Concrete Masonry ${ }^{1,2,2,3}$

Nominal Anchor Diameter d in.	$\begin{gathered} \text { Minimum } \\ \text { Embed. } \\ h_{v} . \\ \text { in. } \\ (\mathrm{mm}) \end{gathered}$	Minimum Edge Distance in. (mm)	Minimum End Distance in. (mm)	Installation Location	ASTM C-90 Block Type	Ultimate Loads		Allowable Loads	
						Tension lbs. (kN)	Shear lbs. (kN)	Tension lbs. (kN)	Shear lbs. (kN)
3/16	$\begin{gathered} 1-1 / 2 \\ (38.1) \end{gathered}$	$\begin{gathered} 8 \\ (203.2) \\ \hline \end{gathered}$	$\begin{gathered} 3 \\ (76.2) \\ \hline \end{gathered}$	Mortar	Lightweight	$\begin{aligned} & 625 \\ & (2.8) \end{aligned}$	$\begin{aligned} & 660 \\ & (2.9) \end{aligned}$	$\begin{gathered} 125 \\ (0.6) \end{gathered}$	$\begin{gathered} 130 \\ (0.6) \end{gathered}$
		$\begin{gathered} 3 \\ (76.2) \end{gathered}$	$\begin{gathered} 3 \\ (76.2) \end{gathered}$	Face	Lightweight	$\begin{gathered} 410 \\ (1.8) \end{gathered}$	$\begin{aligned} & 600 \\ & (2.7) \end{aligned}$	$\begin{gathered} 80 \\ (0.4) \end{gathered}$	$\begin{gathered} 120 \\ (0.5) \end{gathered}$
1/4	$\begin{gathered} 1-1 / 2 \\ (38.1) \end{gathered}$	$\begin{gathered} 8 \\ (203.2) \\ \hline \end{gathered}$	$\begin{gathered} 3 \\ (76.2) \\ \hline \end{gathered}$	Mortar	Lightweight	$\begin{array}{r} 730 \\ (3.3) \\ \hline \end{array}$	$\begin{aligned} & 1,010 \\ & (4.5) \end{aligned}$	$\begin{gathered} 145 \\ (0.7) \end{gathered}$	$\begin{gathered} 200 \\ (0.9) \end{gathered}$
		$\begin{gathered} 3 \\ (76.2) \end{gathered}$	$\begin{gathered} 3 \\ (76.2) \end{gathered}$	Face	Lightweight	$\begin{aligned} & 650 \\ & (2.9) \end{aligned}$	$\begin{aligned} & 1,010 \\ & (4.5) \end{aligned}$	$\begin{array}{r} 130 \\ (0.6) \\ \hline \end{array}$	$\begin{gathered} 200 \\ (0.9) \end{gathered}$
5/16	$\begin{gathered} 2-1 / 2 \\ (6.35) \end{gathered}$	$\begin{gathered} 8 \\ (203.2) \\ \hline \end{gathered}$	$\begin{gathered} 4 \\ (101.6) \\ \hline \end{gathered}$	Mortar	Lightweight	$\begin{aligned} & 1,640 \\ & (7.3) \\ & \hline \end{aligned}$	$\begin{gathered} 2,190 \\ (9.7) \\ \hline \end{gathered}$	$\begin{array}{r} 330 \\ (1.5) \\ \hline \end{array}$	$\begin{array}{r} 440 \\ (2.0) \\ \hline \end{array}$
		$\begin{gathered} 4 \\ (101.6) \end{gathered}$	$\begin{gathered} 4 \\ (101.6) \end{gathered}$	Face	Lightweight	$\begin{gathered} 2,110 \\ (9.4) \end{gathered}$	$\begin{aligned} & 1,900 \\ & (8.5) \end{aligned}$	$\begin{gathered} 420 \\ (1.9) \end{gathered}$	$\begin{gathered} 380 \\ (1.7) \end{gathered}$

1. Tabulated load values are for $3 / 16$-inch and $1 / 4$-inch anchors installed in minimum 6 " wide, Grade N, Type II, light weight concrete masonry units conforming to ASTM C 90 that have reached the minimum designated ultimate compressive strength at the time of installation ($f^{\prime} \mathrm{m} \geq 1,500 \mathrm{psi}$).
2. Tabulated load values are for $5 / 16$-inch anchors installed in minimum $8^{\prime \prime}$ wide, Grade N, Type II, light weight concrete masonry units conforming to ASTM C 90 that have reached the minimum designated ultimate compressive strength at the time of installation (f'm $\geq 1,500 \mathrm{psi}$).
3. Allowable load capacities listed are calculated using an applied safety factor of 5.0. Consideration of safety factors of 10 or higher may be necessary depending on the application, such as life safety or overhead.
4. Allowable shear loads into the face shell of a masonry wall may be applied in any direction.

FASTENERS

MASONRY PERFORMANCE DATA

Ultimate and Allowable Load Capacities for Tapper+ Anchors Installed into the Tops of Grout Filled Concrete Masonry Walls ${ }^{1,2,3}$

Nominal Anchor Diameter d in.	Minimum Embed. h_{v} in. (mm)	Minimum Edge Distance in. (mm)	Minimum End Distance in. (mm)	ASTM C-90 Block Type	Ultimate Loads		Allowable Loads	
					Tension lbs (kN)	Shear lbs (kN)	Tension lbs (kN)	Shear lbs (kN)
3/16	$\begin{gathered} 1.5 \\ (38.1) \end{gathered}$	$\begin{gathered} 1.5 \\ (38.1) \end{gathered}$	$\begin{gathered} 3 \\ (76.2) \end{gathered}$	Lightweight	$\begin{aligned} & 450 \\ & (2.0) \end{aligned}$	$\begin{array}{r} 510 \\ (2.3) \end{array}$	$\begin{gathered} 90 \\ (0.4) \end{gathered}$	$\begin{array}{r} 100 \\ (0.5) \end{array}$
1/4	$\begin{gathered} 1.5 \\ (38.1) \end{gathered}$	$\begin{gathered} 1.5 \\ (38.1) \end{gathered}$	$\begin{gathered} 3 \\ (76.2) \end{gathered}$	Lightweight	$\begin{aligned} & \hline 825 \\ & (3.7) \end{aligned}$	$\begin{array}{r} 780 \\ (3.5) \end{array}$	$\begin{gathered} \hline 165 \\ (0.7) \end{gathered}$	$\begin{gathered} 155 \\ (0.7) \end{gathered}$
5/16	$\begin{gathered} 2 \\ (50.8) \end{gathered}$	$\begin{gathered} 1.75 \\ (44.5) \end{gathered}$	$\begin{gathered} 3 \\ (76.2) \end{gathered}$	Lightweight	$\begin{aligned} & 1,735 \\ & (7.7) \end{aligned}$	$\begin{gathered} 800 \\ (3.6) \end{gathered}$	$\begin{array}{r} 350 \\ (1.5) \end{array}$	$\begin{gathered} 160 \\ (0.7) \end{gathered}$

1. Tabulated load values are for $3 / 16$-inch and $1 / 4$-inch anchors installed in minimum $6^{\prime \prime}$ wide, Grade N, Type II, light weight concrete masonry units conforming to ASTM C 90 that have reached the minimum designated ultimate compressive strength at the time of installation ($\mathrm{f}^{\prime} \mathrm{m} \geq 1,500 \mathrm{psi}$).
2. Tabulated load values are for $5 / 16$-inch anchors installed in minimum $8^{\prime \prime}$ wide, Grade N, Type II, light weight concrete masonry units conforming to ASTM C 90 that have reached the mini mum designated ultimate compressive strength at the time of installation (f'm $\geq 1,500 \mathrm{psi}$).
3. Allowable load capacities listed are calculated using an applied safety factor of 5.0. Consideration of safety factors of 10 or higher may be necessary depending on the application, such as life safety or overhead.

PERFORMANCE DATA

Allowable Load Capacities for Tapper+ Anchors Installed in Clay Brick Masonry ${ }^{1,2,2,4}$

Nominal Anchor Diameter d in.	Minimum Embed. h_{v} in. (mm)	Minimum Edge Distance in. (mm)	Minimum End Distance in. (mm)	Installation Location	Tension lbs. (kN)	Shear lbs. (kN)	i	- Minimum End Distance
3/16	$\begin{gathered} 1-1 / 2 \\ (38.1) \end{gathered}$	$\begin{array}{r} 1-3 / 4 \\ (44.5) \end{array}$	$\begin{gathered} 1-3 / 4 \\ (44.5) \end{gathered}$	Face	$\begin{gathered} 380 \\ (1.7) \end{gathered}$	$\begin{gathered} 165 \\ (0.7) \end{gathered}$		
$3 / 16$				Mortar Joint	$\begin{array}{r} 300 \\ (1.3) \end{array}$	$\begin{gathered} 190 \\ (0.8) \end{gathered}$		\square
1/4				Face	$\begin{aligned} & 605 \\ & (2.7) \end{aligned}$	$\begin{array}{r} 270 \\ (1.2) \end{array}$		
				Mortar Joint	$\begin{gathered} 200 \\ (0.9) \end{gathered}$	$\begin{gathered} 155 \\ (0.7) \end{gathered}$		\square

1. Tabulated load values are for anchors installed in multiple wythe, minimum Grade SW, solid clay brick masonry walls conforming to ASTM C 62. Mortar must be minimum Type N. Masonry compressive strength must be at the specified minimum at the time of installation (f'm $\geq 1,500 \mathrm{psi}$).
2. Allowable load capacities listed are calculated using and applied safety factor of 5.0. Consideration of safety factors of 10 or higher may be necessary depending upon the application such as lifesafety or overhead.
3. Allowable shear loads into the face or mortar joint of the brick masonry wall may be applied in any direction.
4. The tabulated values are applicable for anchors installed at a critical spacing between anchors of 12 times the anchor diameter.

Average Withdrawal Capacity and Average Bending Yield Moment of Tapper+ in Wood ${ }^{1}$

Nominal Anchor Diameter ${ }^{d}$ in.	Minimum Embed. h_{v} in. (mm)	Minimum Edge Distance in. (mm)	Withdrawal Capacity ${ }^{1}$ lbs. (kN)	Bending Yield Moment psi (MPa)
3/16	$\begin{gathered} 1 \\ (25.4) \end{gathered}$	$\begin{gathered} 1-3 / 4 \\ (44.5) \end{gathered}$	$\begin{aligned} & 540 \\ & (2.4) \end{aligned}$	$\begin{gathered} 67,000 \\ (464) \end{gathered}$
	$\begin{gathered} 1-1 / 2 \\ (38.1) \end{gathered}$	$\begin{gathered} 1-3 / 4 \\ (44.5) \end{gathered}$	$\begin{aligned} & 820 \\ & (3.7) \end{aligned}$	$\begin{gathered} 67,000 \\ (464) \end{gathered}$
1/4	$\begin{gathered} 1 \\ (25.4) \end{gathered}$	$\begin{gathered} 1-3 / 4 \\ (44.5) \end{gathered}$	$\begin{gathered} 680 \\ (3.0) \end{gathered}$	$\begin{gathered} 107,000 \\ (740) \end{gathered}$
	$\begin{gathered} 1-1 / 2 \\ (38.1) \end{gathered}$	$\begin{array}{r} 1-3 / 4 \\ (44.5) \end{array}$	$\begin{gathered} 1,050 \\ (4.7) \end{gathered}$	$\begin{gathered} 107,000 \\ (740) \end{gathered}$

[^1]
INSTALLATION SPECIFICATIONS

Strength Design Installation Table for Tapper+ ${ }^{1}$

Anchor Property/Setting Information	Notation	Units	3/16	1/4	5/16
Nominal outside anchor diameter	$d^{\text {a }}$	$\begin{gathered} \text { in. } \\ (\mathrm{mm}) \end{gathered}$	$\begin{aligned} & 0.145 \\ & (3.7) \end{aligned}$	$\begin{aligned} & 0.185 \\ & (4.7) \end{aligned}$	$\begin{aligned} & 0.250 \\ & (6.4) \end{aligned}$
Nominal drill bit diameter	$d_{\text {bit }}$	$\begin{gathered} \text { in. } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} 3 / 16 \\ \text { Tapper+ Bit } \end{gathered}$	$\begin{gathered} 1 / 4 \\ \text { Tapper+ Bit } \end{gathered}$	$\begin{gathered} 5 / 16 \\ \text { Tapper+ Bit } \end{gathered}$
Tapper+ bit tolerance range	-	in.	$\begin{gathered} 0.170 \\ \text { to } \\ 0.176 \\ \hline \end{gathered}$	$\begin{aligned} & 0.202 \\ & \text { to } \\ & 0.207 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.255 \\ & \text { to } \\ & 0.259 \\ & \hline \end{aligned}$
Minimum nominal embedment depth	$h_{\text {nom }}$	$\begin{gathered} \text { in. } \\ (\mathrm{mm}) \end{gathered}$	$\begin{aligned} & 1-3 / 4 \\ & (44) \end{aligned}$	$\begin{aligned} & 1-3 / 4 \\ & (44) \end{aligned}$	$\begin{aligned} & 1-7 / 8 \\ & (48) \end{aligned}$
Effective embedment	$h_{e f}$	$\begin{gathered} \mathrm{in} . \\ (\mathrm{mm}) \end{gathered}$	$\begin{aligned} & 1.23 \\ & (31) \end{aligned}$	$\begin{aligned} & 1.23 \\ & (31) \end{aligned}$	$\begin{aligned} & 1.10 \\ & (76) \end{aligned}$
Minimum hole depth	$h_{\text {hole }}$	$\begin{gathered} \text { in. } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} 2 \\ (51) \end{gathered}$	$\begin{gathered} 2 \\ (51) \end{gathered}$	$\begin{aligned} & 2-1 / 4 \\ & (57) \end{aligned}$
Minimum concrete member thickness	$h_{\text {min }}$	$\begin{gathered} \text { in. } \\ (\mathrm{mm}) \end{gathered}$	$\begin{aligned} & 3-1 / 4 \\ & (83) \end{aligned}$	$\begin{aligned} & 3-1 / 4 \\ & (83) \end{aligned}$	$\begin{aligned} & \hline 3-1 / 4 \\ & (83) \end{aligned}$
Minimum overall anchor length	$\ell_{\text {anch }}$	$\begin{gathered} \text { in. } \\ (\mathrm{mm}) \end{gathered}$	$\begin{aligned} & 2-1 / 4 \\ & (57) \end{aligned}$	$\begin{aligned} & 2-1 / 4 \\ & (57) \end{aligned}$	$\begin{gathered} 2 \\ (51) \end{gathered}$
Minimum edge distance	$c_{\text {min }}$	$\begin{gathered} \text { in. } \\ (\mathrm{mm}) \end{gathered}$	$\begin{aligned} & \hline 1-3 / 4 \\ & (44) \end{aligned}$	$\begin{aligned} & 1-3 / 4 \\ & (44) \end{aligned}$	$\begin{aligned} & 1-1 / 2 \\ & (38) \end{aligned}$
Minimum spacing distance	$s_{\text {min }}$	$\begin{gathered} \text { in. } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} 1 \\ (25) \end{gathered}$	$\begin{gathered} 2 \\ (51) \end{gathered}$	$\begin{gathered} 2 \\ (51) \end{gathered}$
Critical edge distance	$c_{a c}$	$\begin{gathered} \mathrm{in} . \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} 3 \\ (76) \end{gathered}$	$\begin{gathered} 3 \\ (76) \end{gathered}$	$\begin{aligned} & 2-1 / 2 \\ & (64) \end{aligned}$
Max impact wrench power	$T_{\text {screw }}$	$\begin{aligned} & \hline \mathrm{f}-\mathrm{lbs} \\ & (\mathrm{~N}-\mathrm{m}) \end{aligned}$	-	-	$\begin{gathered} 115 \\ (150) \end{gathered}$
Phillips bit size (No.)		-	2	3	3

For SI: 1 inch $=25.4 \mathrm{~mm}, 1 \mathrm{ft}-\mathrm{lbf}=1.356 \mathrm{~N}-\mathrm{m}$.

1. The Information presented in this table is to be used in conjunction with the design criteria of ACl 318 Appendix D .

Tapper+ Anchor Detail

[^2]
STRENGTH DESIGN INFORMATION

Tension Design Information for Tapper+ Anchor in Concrete (For Use with Load Combinations Taken from ACI 318, Section 9.2) ${ }^{1,2,3,4,5,6,7,8,9}$

Design Characteristic	Notation	Units	Nominal Anchor Size (Inch)		5/16
			3/16	1/4	
Anchor category	1,2 or 3	-	1	1	1
Nominal embedment depth	$h_{\text {nom }}$	$\begin{gathered} \text { in. } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} 1-3 / 4 \\ (44) \end{gathered}$	$\begin{aligned} & 1-3 / 4 \\ & (44) \end{aligned}$	$\begin{aligned} & 1-7 / 8 \\ & (48) \end{aligned}$
STEEL STRENGTH IN TENSION ${ }^{4}$					
Minimum specified ultimate tensile strength (neck)	$f_{\text {utid }}{ }^{8}$	$\underset{\left(\mathrm{N}_{\mathrm{ks}} \mathrm{~mm}^{2}\right)}{ }$	$\begin{gathered} 100 \\ (689) \end{gathered}$	$\begin{gathered} 100 \\ (689) \end{gathered}$	$\begin{gathered} 100 \\ (689) \end{gathered}$
Effective tensile stress area (neck)	$\begin{aligned} & \text { Ase,N } \\ & (A s e)^{9} \end{aligned}$	$\begin{gathered} \mathrm{in}^{2} \\ \left(\mathrm{~mm}^{2}\right) \end{gathered}$	$\begin{aligned} & 0.0162 \\ & (10.4) \end{aligned}$	$\begin{aligned} & 0.0268 \\ & (17.3) \end{aligned}$	$\begin{aligned} & 0.044 \\ & (28.4) \end{aligned}$
Steel strength in tension	$N_{s 8}{ }^{8}$	$\underset{(\mathrm{kN})}{\stackrel{l}{\mathrm{l}}}$	$\begin{aligned} & 1,620 \\ & (7.2) \end{aligned}$	$\begin{aligned} & 2,680 \\ & (12.0) \end{aligned}$	$\begin{aligned} & 4,400 \\ & (19.6) \end{aligned}$
Reduction factor for steel strength ${ }^{3}$	ϕ	-		0.65	
CONCRETE BREAKOUT STRENGTH IN TENSION ${ }^{7}$					
Effective embedment	$h_{\text {ef }}$	$\begin{gathered} \text { in. } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} 1.23 \\ (31.2) \end{gathered}$	$\begin{gathered} 1.23 \\ (31.2) \end{gathered}$	$\begin{aligned} & 1.10 \\ & (28) \end{aligned}$
Effectiveness factor for concrete breakout	$k_{\text {unct }}$	-	24	24	24
Modification factor for cracked and uncracked concrete ${ }^{5}$	$\Psi_{C, N}{ }^{9}$	-	$\begin{gathered} 1.0 \\ \text { See note } 5 \end{gathered}$	$\begin{gathered} 1.0 \\ \text { See note } 5 \end{gathered}$	$\begin{gathered} 1.0 \\ \text { See note } 5 \end{gathered}$
Critical edge distance	$c_{a c}$	$\begin{gathered} \text { in. } \\ (m m) \end{gathered}$	$\stackrel{3}{(76.2)}$	$\stackrel{3}{(76.2)}$	$\begin{aligned} & 2-1 / 2 \\ & (64) \end{aligned}$
Reduction factor for concrete breakout strength ${ }^{3}$	ϕ	-		. 65 (Condition	
PULLOUT STRENGTH IN TENSION ${ }^{7}$					
Characteristic pullout strength, uncracked concrete (2,500 psi) ${ }^{6}$	$N_{\text {p,unct }}$	(bN)	$\begin{gathered} 635 \\ (2.8) \end{gathered}$	$\begin{aligned} & 940 \\ & (4.2) \end{aligned}$	See note 10
Reduction factor for pullout strength ${ }^{3}$	ϕ	-		65 (Condition	

For SI: 1 inch $=25.4 \mathrm{~mm}, 1 \mathrm{ksi}=6.895 \mathrm{~N} / \mathrm{mm} 2,1 \mathrm{lbf}=0.0044 \mathrm{kN}$.

1. The data in this table is intended to be used with the design provisions of ACl 318 Appendix D .
2. Installation must comply with published instructions and details.
3. All values of ϕ were determined from the load combinations of UBC Section 1605.2.1, UBC Section 1612.2.1, or ACI 318 Section 9.2. If the load combinations of UBC Section 1902.2 or $A C I$ 318 Appendix C are used, the appropriate value of ϕ must be determined in accordance with ACI 318 D.4.5. For reinforcement that meets ACI 318 Appendix D requirements for Condition A, see ACI 318 D. 4.4 for the appropriate ϕ factor.
4. The Tapper+ anchor is considered a brittle steel element as defined by ACI 318 D.1. Tabulated values for steel strength in tension must be used for design.
5. For all design cases use $\Psi_{c, N}=1.0$. The appropriate effectiveness factor for uncracked concrete ($k_{\text {uncr }}$) must be used.
6. For all design cases use $\Psi_{c \mathrm{P}}=1.0$. For calculation of Npn, see Section 4.1.3 of this report.
7. Anchors are permitted to be used in structural sand-lightweight provided that $N_{b}, N_{e q}$ and $N_{p n}$ are multiplied by a factor of 0.60 .
8. For $2003 \mathrm{IBC}, \mathrm{f}_{\text {uta }}$ replaces $\mathrm{f}_{\mathrm{ut}} ; \mathrm{N}_{\text {sa }}$ replaces N_{s}; and $\Psi_{c, N}$ replaces Ψ_{3}.
9. The notation in parenthesis is for the 2006 IBC.
10. Pullout strength does not control design of indicated anchors. Do not calculate pullout strength for indicated anchor size and embedment.

STRENGTH DESIGN INFORMATION

Shear Design Information for Tapper+ Anchor in Concrete
(For use with load combinations taken from ACI 318, Section 9.2) ${ }^{1,2,3,4,5,6,7,7}$

Design Characteristic	Notation	Units	Nominal Anchor Diameter		
			3/16"	1/4"	5/16"
Anchor category	1,2 or 3	-	1	1	1
Nominal embedment depth	$h_{\text {nom }}$	$\begin{aligned} & \text { in. } \\ & (\mathrm{mm}) \end{aligned}$	1-3/4 (44)	$1-3 / 4$ (44)	$\begin{aligned} & 1-7 / 8 \\ & (48) \end{aligned}$
STEEL STRENGTH IN SHEAR ${ }^{4}$					
Steel strength in shear ${ }^{5}$	$V_{s a}$	$\begin{gathered} \mathrm{lb} \\ (\mathrm{kN}) \end{gathered}$	$\begin{aligned} & 810 \\ & (3.6) \end{aligned}$	$\begin{aligned} & 1,180 \\ & (5.3) \end{aligned}$	$\begin{aligned} & 2,475 \\ & (11.1) \end{aligned}$
Reduction factor for steel strength ${ }^{3}$	ϕ	-		0.60	
CONCRETE BREAKOUT STRENGTH IN SHEAR ${ }^{6}$					
Load bearing length of anchor ($h_{\text {ef }}$ or $8 \mathrm{~d}_{0}$, whichever is less)	ℓ_{e}	$\begin{aligned} & \text { in. } \\ & (\mathrm{mm}) \end{aligned}$	$\begin{aligned} & 1.23 \\ & (32) \end{aligned}$	$\begin{aligned} & 1.23 \\ & (32) \end{aligned}$	$\begin{aligned} & 1.10 \\ & (28) \end{aligned}$
Nominal anchor diameter	$d_{a}\left(d_{0}\right)$	$\begin{aligned} & \text { in. } \\ & (\mathrm{mm}) \end{aligned}$	$\begin{aligned} & 0.145 \\ & (3.7) \end{aligned}$	$\begin{aligned} & 0.185 \\ & (4.7) \end{aligned}$	$\begin{aligned} & 0.250 \\ & (6.4) \end{aligned}$
Reduction factor for concrete breakout ${ }^{3}$	ϕ	-		(Conditio	
PRYOUT STRENGTH IN SHEAR ${ }^{6}$					
Coefficient for pryout strength (1.0 for hef <2.5 in., 2.0 for hef ≥ 2.5 in.)	$k_{\text {cp }}$	-	1.0	1.0	1.0
Effective embedment	$h_{\text {ef }}$	$\begin{aligned} & \text { in. } \\ & (\mathrm{mm}) \end{aligned}$	$\begin{gathered} 1.23 \\ (31.2) \end{gathered}$	$\begin{gathered} 1.23 \\ (31.2) \end{gathered}$	$\begin{gathered} 1.10 \\ (27.9) \end{gathered}$
Reduction factor for pryout strength ${ }^{3}$	ϕ	-	0.70 (Condition B)		

For SI: 1 inch $=25.4 \mathrm{~mm}, 1 \mathrm{lbf}=0.0044 \mathrm{kN}$.

1. The data in this table is intended to be used with the design provisions of ACI 318 Appendix D.
2. Installation must comply with published instructions and details.
3. All values of ϕ were determined from the load combinations of UBC Section 1605.2.1, UBC Section 1612.2.1, or ACI 318 Section 9.2. If the load combinations of UBC Section 1902.2 or $A C I$ 318 Appendix C are used, the appropriate value of ϕ must be determined in accordance with ACI 318 D.4.5. For reinforcement that meets ACI 318 Appendix D requirements for Condition A, see ACl 318 D.4.4 for the appropriate ϕ factor.
4. The Tapper+ anchor is considered a brittle steel element as defined by ACI 318 D.1.
5. Tabulated values for steel strength in shear must be used for design.
6. Anchors are permitted to be used in structural sand-lightweight concrete, for $\mathrm{ACI} 318-05$, the values V_{b} must be multiplied by 0.60 , in lieu of ACI 318 D .3 .4 .
7. For $2003 \mathrm{IBC}, \mathrm{V}_{\text {sa }}$ replaces V_{s}; and ℓ_{e} replaces ℓ.
8. The notation in parenthesis is for the 2006 IBC.

STRENGTH DESIGN PERFORMANCE DATA

Tension and Shear Design Strengths for Tapper+ in Uncracked Concrete

		2,500		3,000		4,000		6,000		8,000	
d	$h_{\text {nom }}$	$\phi N \mathrm{n}$	$\phi \mathrm{V}$ n	ϕ Nn	$\phi \mathrm{V}$ n	$\phi N n$	¢Vn	ϕ Nn	ϕ Vn	¢Nn	ϕ Vn
3/16	1-3/4	415	485	435	485	475	485	540	485	585	485
1/4	1-3/4	610	710	660	710	740	710	870	710	975	710
5/16	1-7/8	900	970	985	1,060	1,140	1,225	1,395	1,485	1,610	1,485

Legend
Steel Strength Controls \square Concrete Breakout Strength Controls \qquad Anchor Pullout/Pryout Strength Controls

[^3] with minimum slab thickness, $h_{a}=h_{\text {minn }}$ and with the following conditions:
$\mathrm{c}_{\mathrm{a} 1}$ is greater than or equal to the critical edge distance, c_{ac} (table values based on $\mathrm{c}_{\mathrm{a} 1}=\mathrm{c}_{\mathrm{ac}}$). - $\mathrm{C}_{\mathrm{a} 2}$ is greater than or equal to $1.5 \mathrm{C}_{\mathrm{a} 1}$.
2. Calculations were performed according to $\mathrm{ACl} 318-08$ Appendix D. The load level corresponding to the controlling failure mode is listed. (e.g. For tension: steel, concrete breakout and pullout; For shear: steel, concrete breakout and pryout). Furthermore, the capacities for concrete breakout strength in tension and pryout strength in shear are calculated using the effective embedment values, $h_{e f}$ for the selected anchors as noted in the design information tables. Please also reference the installation specifications for more information.
3. Strength reduction factors (ϕ) were based on ACl 318 Section 9.2 for load combinations. Condition B is assumed.
4. Tabular values are permitted for static loads only, seismic loading is not considered with these tables.
5. For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318 Appendix D .
6. Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths please see ACI 318 Appendix D. For other design conditions including seismic considerations please see ACI 318 Appendix D.

ORDERING INFORMATION

(HWH)

(PFH)

Blue Perma-Seal Tapper - Standard Pack*

Cat No.		Screw Size	Quantities	
	HWH			Box
2700SD	$2740 S D$	$3 / 16^{\prime \prime} \times 1-1 / 4^{\prime \prime}$	100	500
$2702 S D$	$2742 S D$	$3 / 16^{\prime \prime} \times 1-3 / 4^{\prime \prime}$	100	500
$2704 S D$	$2744 S D$	$3 / 16^{\prime \prime} \times 2-1 / 4^{\prime \prime}$	100	500
$2706 S D$	$2746 S D$	$3 / 16^{\prime \prime} \times 2-3 / 4^{\prime \prime}$	100	500
$2708 S D$	$2748 S D$	$3 / 16^{\prime \prime} \times 3-1 / 4^{\prime \prime}$	100	500
$2710 S D$	$2750 S D$	$3 / 16^{\prime \prime} \times 3-3 / 4^{\prime \prime}$	100	500
$2712 S D$	$2752 S D$	$3 / 16^{\prime \prime} \times 4^{\prime \prime}$	100	500
$2720 S D$	$2760 S D$	$1 / 4^{\prime \prime} \times 1-1 / 4^{\prime \prime}$	100	500
$2722 S D$	$2762 S D$	$1 / 4^{\prime \prime} \times 1-3 / 4^{\prime \prime}$	100	500
$2724 S D$	$2764 S D$	$1 / 4^{\prime \prime} \times 2-1 / 4^{\prime \prime}$	100	500
$2726 S D$	$2766 S D$	$1 / 4^{\prime \prime} \times 2-3 / 4^{\prime \prime}$	100	500
$2728 S D$	$2768 S D$	$1 / 4^{\prime \prime} \times 3-1 / 4^{\prime \prime}$	100	500
$2730 S D$	$2770 S D$	$1 / 4^{\prime \prime} \times 3-3 / 4^{\prime \prime}$	100	500
$2732 S D$	$2772 S D$	$1 / 4^{\prime \prime} \times 4^{\prime \prime}$	100	500
$2734 S D$	$2774 S D$	$1 / 4^{\prime \prime} \times 5^{\prime \prime}$	100	100
$2736 S D$	$2776 S D$	$1 / 4^{\prime \prime} \times 6^{\prime \prime}$	100	100

Blue Perma-Seal Tapper - Master Pack**

Cat No.			Screw Size	Quantities	Drill Bit References	
HWH	PFH					
$9462 S D$	$9476 S D$	$3 / 16^{\prime \prime} \times 1-1 / 4^{\prime \prime}$	2000	2781	2793	
$9463 S D$	$9477 S D$	$3 / 16^{\prime \prime} \times 1-3 / 4^{\prime \prime}$	2000	2781	2793	
$9464 S D$	$9478 S D$	$3 / 16^{\prime \prime} \times 2-1 / 4^{\prime \prime}$	2000	2782	2793	
$9465 S D$	$9479 S D$	$3 / 16^{\prime \prime} \times 2-3 / 4^{\prime \prime}$	2000	2782	2793	
$9466 S D$	$9480 S D$	$3 / 16^{\prime \prime} \times 3-1 / 4^{\prime \prime}$	1000	2783	2794	
$9467 S D$	$9481 S D$	$3 / 16^{\prime \prime} \times 3-3 / 4^{\prime \prime}$	1000	2783	2794	
$9468 S D$	$9482 S D$	$3 / 16^{\prime \prime} \times 44^{\prime \prime}$	1000	2783	2794	
$9469 S D$	$9483 S D$	$1 / 4^{\prime \prime} \times 1-1 / 4^{\prime \prime}$	2000	2785	2796	
$9470 S D$	$9484 S D$	$1 / 4^{\prime \prime} \times 1-3 / 4^{\prime \prime}$	2000	2785	2796	
$9471 S D$	$9485 S D$	$1 / 4^{\prime \prime} \times 2-1 / 4^{\prime \prime}$	1000	2786	2796	
$9472 S D$	$9486 S D$	$1 / 4^{\prime \prime} \times 2-3 / 4^{\prime \prime}$	1000	2786	2796	
$9473 S D$	$9487 S D$	$1 / 4^{\prime \prime} \times 3-1 / 4^{\prime \prime}$	1000	2787	2797	
$9474 S D$	$9488 S D$	$1 / 4^{\prime \prime} \times 3-3 / 4^{\prime \prime}$	1000	2787	2797	
$9475 S D$	$9489 S D$	$1 / 4^{\prime \prime} \times 4^{\prime \prime}$	1000	2787	2797	
	$9490 S D$	$1 / 4^{\prime \prime} \times 5^{\prime \prime}$	1000	2788	2797	
	$9491 S D$	$1 / 4^{\prime \prime} \times 66^{\prime \prime}$	1000	2789	2797	

[^4]
[^0]: 1. Allowable load capacities listed are calculated using and applied safety factor of 4.0. Consideration of safety factors of 10 or higher may be necessary depending on the application, such as life safety or overhead.
 2. Linear interpolation may be used to determine allowable loads for intermediate compressive strengths.
 3. Allowable load capacities are multiplied by reduction factors found when anchor spacing or edge distances are less than critical distances.
[^1]: 1. Tests in Douglas-Fir Larch with Specific Gravity of 0.42 ; screw oriented tangental to wood grain.
[^2]: Slotted hex head version pictured, flat head length is measured from top of head to tip of anchor.

[^3]: 1. Tabular values are provided for illustration and are applicable for single anchors installed in normal-weight concrete
[^4]: HWH = Hex Washer Head (slotted) ; PFH = Phillips Flat Head ; TFH = Trim Flat Head ;
 FHH = Flange Hex Head.
 Tapper+ parts have an "SD" designation added to the catalog number.

 * - One Tapper+ drill bit included in each standard box.
 ** - Drill bit not included with master pack.
 Shaded catalog numbers denote sizes which are less than the minimum standard anchor length for strength design.

