

Wedge-Bolt[®] Screw Anchor

Carbon Steel OT and 410 Stainless Steel

PRODUCT DESCRIPTION

The Wedge-Bolt anchor is a one piece, heavy duty screw anchor with a finished hex head. It is simple to install, easy to identify, fully removable and vibration resistant. The Wedge-Bolt has many unique features and benefits that make it well suited for many applications in a variety of base materials. Optimum performance is obtained using a combination of patented design concepts. The steel threads along the anchor body self tap into the hole during installation and provide positive keyed engagement.

The benefit to the designer is higher load capacities, while the benefit to the user is ease of installation. The Wedge-Bolt can be installed with either a powered impact wrench or conventional hand socket.

Wedge-Bolt OT – The Wedge-Bolt OT is specifically engineered for use in fixture clearance holes sized a minimum of 1/8" over nominal. The Wedge-Bolt OT must be installed with an ANSI rotary drill bit.

410 Stainless Steel Wedge-Bolt – Wedge-Bolt screw anchors are designed to be used with a matched tolerance Wedge-Bit for optimum performance. The 410 Stainless Steel Wedge-Bolt works in fixture clearance holes that are 1/16" over nominal, which is typical of standard fixture holes used in steel fabrication.

GENERAL APPLICATIONS AND USES

- Racking and Shelving
- Material Handling
- Support Ledgers
- Storage Facilities
- Fencing
- Repairs
- Maintenance
- Retrofits

FEATURES AND BENEFITS

- + One-piece design eliminates possibility of lost anchor parts or improper assembly
- + Can be installed with an impact wrench or conventional hand socket
- + Fast installation and immediate loading minimizes downtime
- + High load capacities and full contact along thread length
- + Diameter and length ID stamped on head of each hex head anchor for easy inspection
- + Finished hex head provides attractive appearance and eliminates tripping hazard
- + Can be installed closer to the edge than traditional expansion anchors
- + Versatile installation in concrete, block and brick masonry
- + Ratchet teeth on underside of hex washer head lock against the fixture
- + Removable and will not leave components in the hole

TESTING, APPROVALS AND LISTINGS

Tested in accordance with ASTM F488 and AC106 criteria

GUIDE SPECIFICATIONS

CSI Divisions: 03151-Concrete Anchoring, 04081-Masonry Anchorage and 05090-Metal Fastenings. Screw anchors shall be Wedge-Bolt OT or 410 Stainless Steel Wedge-Bolt as supplied by Powers Fasteners, Inc., Brewster, NY.

SECTION CONTENTS Page No	SECTION	CONTENTS	Page No
--------------------------	----------------	----------	---------

General Information 1
Installation Specifications
Material Specifications 3
Performance Data 4
Design Criteria 13
Ordering Information 16

Carbon Steel Wedge-Bolt OT (ANSI)

410 Stainless Steel Wege-Bolt (Blue Tip)

HEAD STYLES

Hex Head

ANCHOR MATERIALS

Zinc Plated Carbon Steel Type 410 Stainless Steel

ANCHOR SIZE RANGE (TYP.)

1/4" through 3/4" diameter

SUITABLE BASE MATERIALS

Normal-weight Concrete Structural Lightweight Concrete Grouted Concrete Masonry (CMU) Brick Masonry

INSTALLATION SPECIFICATIONS

ANCHO

Carbon Steel Wedge-Bolt OT (Orange Tip)

	Nominal Anchor Diameter, d							
Dimension	1/4"	3/8"	1/2"	5/8"	3/4"			
ANSI Drill Bit Size, d _{bit} (in.)	1/4	3/8	1/2	5/8	3/4			
ANSI Drill Bit Size Range (in.)	0.260-0.268	.260-0.268 0.390-0.398 0.520-0.530		0.650-0.660	0.775-0.787			
Fixture Clearance Hole, <i>d_h</i> (in.)	3/8	1/2	5/8	3/4	7/8			
Head Washer Height (in.)	7/32	21/64	7/16	1/2	19/32			
Washer O.D., <i>d</i> _w (in.)	9/16	47/64	1	1-3/16	1-13/32			
Wrench/Socket Size (in.)	7/16	9/16	3/4	15/16	1-1/8			

410 Stainless Steel Wedge-Bolt (Blue Tip)

	Nominal Anchor Diameter, d						
Dimension	1/4"	3/8"	1/2"				
Wedge-Bit Size, d _{bit} (in.)	1/4	3/8	1/2				
Wedge-Bit Size Range (in.)	0.255-0.259	0.385-0.389	0.490-0.495				
Fixture Clearance Hole, <i>d_h</i> (in.)	5/16	7/16	9/16				
Head Washer Height (in.)	7/32	21/64	7/16				
Washer O.D., <i>d</i> _w (in.)	9/16	47/64	1				
Wrench/Socket Size (in.)	7/16	9/16	3/4				

Must be used with a matched-tolerance Wedge-Bit.

Nomenclature

- d = Nominal diameter of anchor
- d_{bit} = Diameter of drill bit
- = Diameter of fixture clearance hole dh
- = Diameter of washer dw
- = Base material thickness. h
- The minimum value of h should be $1.5h_v$ or 3" minimum (whichever is greater) hv
- = Minimum embedment depth
- = Length of anchor 1
- = Fixture thickness t

of ANSI Standard B212.15.

Using the proper drill bit, drill a hole into the base material to a depth of at least one anchor diameter deeper than the embedment required.

by rotating clockwise and applying pressure in toward the base material. A powered impact wrench may also be used. This will engage the first few threads as the anchor begins to advance.

Continue tightening the anchor until the head is firmly seated against the fixture while achieving the required embedment

socket wrench

depth.

INSTALLATION SPECIFICATIONS

Maximum Clamping Torque (ft.-lbs.)

	Anchor Diameter					
Base Material	1/4"	3/8"	1/2"	5/8"	3/4"	
2,000 psi Concrete	5	30	45	75	150	
4,000 psi Concrete	10	40	60	95	200	
6,000 psi Concrete	10	40	60	95	200	
3,000 psi Lightweight Concrete	10	15	40	60	70	
Grout Filled Block	10	15	40	60	70	
Solid Red Brick	10	30	45	75	100	

Ratchet Teeth Lock Head Against Fixture

MATERIAL SPECIFICATIONS

Carbon Steel Wedge-Bolt OT

Anchor Component	Component Material
Anchor Body	Case Hardened Carbon Steel
Zinc Plating	ASTM B633, SC1, Type III (Fe/Zn 5) Mimimum plating requirement for Mild Service Condition

410 Stainless Steel Wedge-Bolt

Anchor Component	Component Material
Anchor Body	Heat Treated 410 Stainless Steel
Coating	Class 4 Sealcoat (1500 hour rating for ASTM B 117 salt spray test, 20 hour rating for DIN 50018 2.0 S kesternich test undamaged coating reference).

Ultimate Load Capacities for Wedge-Bolt OT installed in Normal-Weight Concrete at Critical Spacing and Edge Distances^{1,2,3}

Nominal	Minimum	Minimum Concrete Compressive Strength (f'c)					
Anchor Diameter	Depth	2,000 psi ((13.8 MPa)	4,000 psi ((27.6 MPa)	6,000 psi	(41.4 MPa)
d in	h _v in	Tension	Shear lbs.	Tension	Shear lbs.	Tension	Shear lbs.
(mm)	(mm)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)
	1	720	920	1,340	1,880	1,660	2,160
	(25.4)	(3.2)	(4.0)	(6.0)	(8.3)	(7.5)	(9.6)
1/4	1 1/2	1,440	2,000	2,140	2,080	2,480	2,260
	(38.1)	(6.5)	(8.8)	(9.6)	(9.2)	(11.2)	(10.0)
(6.4)	2 (50.8)	2,400 (10.8)	2,000 (8.8)	3,940 (17.7)	2,080 (9.2)	4,980 (22.4)	2,680 (11.9)
	2 1/2 (63.5)	3,520 (15.8)	2,000 (8.8)	4,660 (21.0)	2,080 (9.2)	5,260 (23.7)	2,680 (11.9)
	1 1/2	1,900	2,760	2,520	3,440	3,040	5,600
	(38.1)	(8.6)	(12.2)	(11.3)	(15.3)	(13.7)	(24.9)
	2	3,000	3,100	3,920	3,440	5,200	5,600
	(50.8)	(13.5)	(13.7)	(17.6)	(15.3)	(23.4)	(24.9)
3/8	2 1/2	4,100	3,440	5,320	3,440	7,340	5,600
(9.5)	(63.5)	(18.5)	(15.3)	(23.9)	(15.3)	(33.0)	(24.9)
	3	5,800	4,120	7,740	4,320	9,900	5,600
	(76.2)	(26.1)	(18.3)	(34.8)	(19.2)	(44.6)	(24.9)
	3 1/2	7,500	4,820	10,140	5,200	12,440	5,600
	(88.9)	(33.8)	(21.4)	(45.6)	(23.1)	(56.0)	(33.8)
	2	2,860	4,960	3,940	5,680	4,780	7,600
	(50.8)	(12.9)	(22.0)	(17.7)	(25.2)	(21.5)	(33.8)
	2 1/2	4,100	5,800	5,200	6,480	6,480	7,960
	(63.5)	(18.5)	(25.8)	(23.4)	(28.8)	(29.2)	(35.4)
1/2	3	5,920	6,200	7,800	7,240	9,380	7,960
(12.7)	(76.2)	(26.6)	(27.5)	(35.1)	(32.2)	(42.2)	(35.4)
	3 1/2	6,060	8,020	8,480	8,160	11,900	8,600
	(88.9)	(27.3)	(35.6)	(38.2)	(36.2)	(53.6)	(38.2)
	4	7,560	8,660	12,620	9,080	12,620	9,600
	(101.6)	(34.0)	(39.0)	(56.8)	(40.9)	(56.8)	(43.2)
	2 1/2	3,420	7,200	4,720	10,240	6,900	10,180
	(63.5)	(15.4)	(32.4)	(21.2)	(45.5)	(31.1)	(45.2)
	3	4,560	7,920	7,380	10,240	8,960	11,400
	(76.2)	(20.5)	(35.2)	(33.2)	(45.5)	(40.3)	(50.7)
5/8	3 1/2	5,720	8,640	10,040	10,240	11,040	11,400
	(88.9)	(25.7)	(38.4)	(45.2)	(45.5)	(49.7)	(50.7)
(15.9)	4	8,240	9,540	12,760	11,140	14,320	12,020
	(101.6)	(37.1)	(42.4)	(57.4)	(49.5)	(64.4)	(53.7)
	4 1/2	10,780	10,460	15,500	12,040	17,600	12,760
	(114.3)	(48.5)	(46.5)	(69.9)	(53.5)	(79.2)	(56.7)
	5	13,300	11,360	18,220	12,960	20,860	13,480
	(127.0)	(59.9)	(50.5)	(82.0)	(57.6)	(93.9)	(59.9)
	3	4,320	9,480	6,480	12,120	8,700	14,800
	(76.2)	(19.4)	(42.1)	(29.2)	(53.9)	(39.2)	(65.8)
	3 1/2	5,720	10,460	9,320	14,820	11,360	16,400
	(88.9)	(25.7)	(46.5)	(41.9)	(65.9)	(51.1)	(72.9)
2/4	4	7,120	11,460	12,140	17,520	14,020	18,000
	(101.6)	(32.0)	(50.9)	(54.6)	(77.9)	(63.1)	(80.0)
3/4	4 1/2	9,240	13,120	13,580	18,660	16,720	19,840
(19.1)	(114.3)	(41.6)	(58.3)	(61.1)	(83.0)	(75.2)	(88.2)
	5	11,340	14,780	15,020	19,740	19,400	21,700
	(127.0)	(51.0)	(65.7)	(67.6)	(87.8)	(87.3)	(96.5)
	5 1/2	13,440	16,640	16,460	20,840	22,080	23,560
	(139.7)	(60.5)	(74.0)	(74.1)	(92.7)	(99.4)	(104.8)
	6	1 5,540	18,120	17,900	21,960	24,760	25,420
	(152.4)	(69.9)	(80.6)	(80.6)	(97.6)	(111.4)	(113.0)

Tabulated load values are applicable for carbon steel anchors.
 Tabulated load values are for anchors installed in concrete. Concrete compressive strength must be at the specified minimum at the time of installation.
 Ultimate load capacities must be reduced by a minimum safety factor of 4.0 or greater to determine allowable working load. Consideration of safety factors of 10 or higher may be necessary depending upon the application such as life safety, or overhead.

Allowable Load Capacities for Wedge-Bolt OT installed in Normal-Weight Concrete at Critical Spacing and Edge Distances^{1,2,3,4}

Nominal	Minimum	Minimum Concrete Compressive Strength (f'c)					
Anchor Diameter	Embedment Depth	2,000 psi	(13.8 MPa)	4,000 psi	(27.6 MPa)	6,000 psi	(41.4 MPa)
d	h_v	Tension	Shear lbs	Tension	Shear lbs	Tension	Shear
(mm)	(mm)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)
	1	180	230	335	470	415	540
	(25.4)	(0.8)	(1.0)	(1.5)	(2.0)	(1.9)	(2.4)
1/4	1 1/2	360	500	535	520	620	565
	(38.1)	(1.6)	(2.2)	(2.4)	(2.3)	(2.8)	(2.5)
(6.4)	2	600	500	985	520	1,245	670
	(50.8)	(2.7)	(2.2)	(4.4)	(2.3)	(5.6)	(2.9)
	2 1/2	880	500	1,165	520	1,315	670
	(63.5)	(4.0)	(2.2)	(5.2)	(2.3)	(5.9)	(2.9)
	1 1/2	475	690	630	860	760	1,400
	(38.1)	(2.1)	(3.0)	(2.8)	(3.8)	(3.4)	(6.2)
	2 (50.8)	750 (3.4)	775 (3.4)	980 (4.4)	860 (3.8)	1,300 (5.9)	1,400 (6.2)
3/8	2 1/2	1,025	860	1,330	860	1,835	1,400
(9.5)	(63.5)	(4.6)	(3.8)	(6.0)	(3.8)	(8.3)	(6.2)
	3	1,450	1,030	1,935	1,080	2,475	1,400
	(76.2)	(6.5)	(4.5)	(8.7)	(4.8)	(11.1)	(6.2)
	3 1/2	1,875	1,205	2,535	1,300	3,110	1,400
	(88.9)	(8.4)	(5.3)	(11.4)	(5.7)	(14.0)	(6.2)
	2	715	1,240	985	1,420	1,195	1,900
	(50.8)	(3.2)	(5.5)	(4.4)	(6.3)	(5.4)	(8.4)
	2 1/2	1,025	1,450	1,300	1,620	1,620	1,990
	(63.5)	(4.6)	(6.4)	(5.9)	(7.2)	(7.3)	(8.8)
1/2	3	1,480	1,550	1,950	1,810	2,345	1,990
(12.7)	(76.2)	(6.7)	(6.8)	(8.8)	(8.0)	(10.6)	(8.8)
	3 1/2	1,515	2,005	2,120	2,040	2,975	2,150
	(88.9)	(6.8)	(8.9)	(9.5)	(9.0)	(13.4)	(9.5)
	4	1,890	2,165	3,155	2,270	3,155	2,400
	(101.6)	(8.5)	(9.7)	(14.2)	(10.2)	(14.2)	(10.8)
	2 1/2	855	1,800	1,180	2,560	1,725	2,545
	(63.5)	(3.8)	(8.1)	(5.3)	(11.3)	(7.8)	(11.3)
	3	1,140	1,980	1,845	2,560	2,240	2,850
	(76.2)	(5.1)	(8.8)	(8.3)	(11.3)	(10.1)	(12.6)
5/8	3 1/2	1,430	2,160	2,510	2,560	2,760	2,850
	(88.9)	(6.4)	(9.6)	(11.3)	(11.3)	(12.4)	(12.6)
(15.9)	4 (101.6)	2,060 (9.3)	2,385 (10.6)	3,190 (14.4)	2,785 (12.3)	3,580 (16.1)	3,020 (13.4)
	4 1/2	2,695	2,615	3,875	3,010	4,400	3,190
	(114.3)	(12.1)	(11.6)	(17.4)	(13.4)	(19.8)	(14.2)
	5	3,325	2,840	4,555	3,240	5,215	3,370
	(127.0)	(15.0)	(12.6)	(20.5)	(14.4)	(23.5)	(14.9)
	3	1,080	2,370	1,620	3,030	2,175	3,700
	(76.2)	(4.9)	(10.5)	(7.3)	(13.4)	(9.8)	(16.4)
	3 1/2 (88.9)	1,430 (6.4)	2,615 (11.6)	2,330 (10.5)	3,705 (21.1)	2,840 (12.8)	4,100 (18.2)
	4 (101.6)	1,780 (8.0)	2,865 (12.7)	3,035 (13.7)	4,380 (19.4)	3,505 (15.8)	4,500 (20.0)
3/4	4 1/2	2,310	3,280	3,395	4,665	4,180	4,960
(19.1)	(114.3)	(10.4)	(14.5)	(15.3)	(20.8)	(18.8)	(22.0)
	5	2,835	3,695	3,755	4,935	4,850	5,425
	(127.0)	(12.8)	(16.4)	(16.9)	(21.9)	(21.8)	(24.4)
	5 1/2	3,360	4,160	4,115	5,210	5,520	5,890
	(139.7)	(15.1)	(18.5)	(18.5)	(23.1)	(24.8)	(26.2)
	6 (152.4)	3,885 (17.5)	4,530 (20.1)	4,475 (20.1)	5,490 (24.4)	6,190 (27.9)	6,355 (28.2)

 Tabulated load values are applicable for carbon steel anchors.
 Allowable load capacities listed are calculated using an applied safety factor of 4.0. Consideration of safety factors of 10 or higher may be necessary depending on the application, such as life safety or overhead.

3. Critical and minimum spacing and edge distances as well as reduction factors for intermediate spacing and edge distances are listed in the Design Criteria section.

4. Linear interpolation may be used to determine allowable loads for intermediate embedments and compressive strengths.

CHANICAL

NCHORS

Ultimate Load Capacities for Wedge-Bolt OT installed in Normal-Weight Concrete at 16 Diameters Spacing and Edge Distances^{1,2,3}

Nominal	Minimum	Spacing	Minimum Concrete Compressive Strength (f'c)					
Diameter	Depth	Distance at	2,000 psi	(13.8 MPa)	4,000 psi	(27.6 MPa)	6,000 psi (41.4 MPa)	
d in.	h _v in.	16 <i>d</i> in.	Tension lbs.	Shear lbs.	Tension Ibs.	Shear lbs.	Tension Ibs.	Shear lbs.
(mm)	(mm)	(mm)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)
	(25.4)		920 (4.1)	920 (4.0)	1,520 (6.8)	1,900 (8.4)	1,650 (7.4)	2,220 (9.8)
1/4	1 1/2 (38.1)	4	1,760 (7.9)	2,340 (10.4)	2,360 (10.6)	2,520 (11.2)	2,480 (11.2)	2,440 (10.8)
(6.4)	2 (50.8)	(101.6)	2,800 (12.6)	2,520 (11.2)	4,230 (19.0)	2,520 (11.2)	4,980 (22.4)	3,058 (13.6)
	2 1/2 (63.5)		4,220 (19.0)	2,800 (12.4)	4,900 (22.1)	2,800 (12.4)	5,260 (23.7)	3,330 (14.8)
	1 1/2 (38.1)		2,140 (9.6)	2,940 (13.1)	2,660 (12.0)	3,990 (17.7)	3,030 (13.6)	6,018 (26.7)
	2 (50.8)		3,300 (14.9)	3,700 (16.4)	4,120 (18.5)	4,515 (20.0)	5,185 (23.3)	6,018 (26.7)
3/8 (9.5)	2 1/2 (63.5)	6 (152.4)	4,460 (20.1)	4,460 (19.8)	5,550 (25.0)	5,045 (22.4)	7,340 (33.0)	6,018 (26.7)
	3 (76.2)		6,180 (27.8)	5,200 (23.1)	7,970 (35.9)	5,570 (24.7)	9,890 (44.5)	6,125 (27.2)
	3 1/2 (88.9)		7,900 (35.6)	5,960 (26.5)	10,390 (46.8)	6,100 (27.1)	12,440 (56.0)	6,240 (27.7)
	2 (50.8)		2,960 (13.3)	5,700 (25.4)	3,930 (17.7)	6,450 (28.6)	4,780 (21.5)	7,830 (34.8)
	2 1/2 (63.5)	<mark>8</mark> (203.2)	4,100 (18.5)	6,450 (28.6)	5,200 (23.4)	6,940 (30.8)	6,480 (29.2)	8,440 (37.5)
1/2 (12.7)	3 (76.2)		5,910 (26.6)	6,690 (29.7)	7,800 (35.1)	7,595 (33.7)	9,380 (42.2)	8,440 (37.5)
	3 1/2 (88.9)		6,060 (27.3)	7,670 (34.1)	8,480 (38.2)	8,400 (37.3)	11,890 (53.5)	8,595 (38.2)
	4 (101.6)		7,620 (34.3)	8,650 (38.4)	13,260 (59.7)	8,400 (37.3)	13,260 (59.7)	9,600 (43.2)
	2 1/2 (63.5)		3,420 (15.4)	7,790 (35.1)	4,720 (21.2)	10,760 (47.8)	6,900 (31.1)	10,340 (45.9)
	3 (76.2)		4,560 (20.5)	8,590 (38.2)	7,380 (33.2)	10,760 (47.8)	8,960 (40.3)	10,870 (48.3)
5/8	3 1/2 (88.9)	10 (254.0)	5,720 (25.7)	9,390 (41.7)	10,040 (45.2)	10,760 (47.8)	11,040 (49.7)	11,400 (50.7)
(15.9)	4 (101.6)		8,280 (37.3)	11,430 (50.8)	12,760 (57.4)	11,700 (52.0)	14,320 (64.4)	12,095 (53.8)
	4 1/2 (114.3)		10,860 (48.9)	11,470 (51.0)	15,500 (69.8)	12,640 (56.2)	17,600 (79.2)	12,790 (56.9)
	5 (127.0)		13,440 (60.5)	12,520 (55.6)	18,220 (82.0)	13,580 (60.4)	20,860 (93.9)	13,490 (60.0)
	3 (76.2)		4,320 (19.4)	9,690 (43.1)	6,480 (29.2)	12,245 (54.4)	10,260 (46.2)	14,825 (65.9)
	3 1/2 (88.9)		5,760 (25.9)	11,010 (48.9)	9,320 (41.9)	14,225 (63.1)	12,140 (54.6)	16,590 (73.8)
	4 (101.6)		7,200 (32.4)	12,330 (54.8)	12,140 (54.6)	18,175 (80.8)	14,020 (63.1)	18,025 (80.1)
3/4 (19.1)	4 1/2 (114.3)	12 (304.8)	9,800 (44.1)	14,780 (65.7)	13,640 (61.4)	19,660 (87,4)	16,720 (75.2)	19,870 (88.4)
	5 (127.0)		12,400 (55.8)	17,230 (76.6)	15,120 (68.0)	21,150 (94,0)	19,400 (87.3)	21,720 (96.6)
	5 1/2 (139.7)		15,000 (67.5)	19,680 (87.5)	16,600 (74.7)	22,640 (100.7)	22,080 (99.4)	23,570 (104.8)
	6 (152.4)		17,570 (79.1)	22,140 (98.4)	18,080 (81.4)	24,130 (107.3)	24,760 (111.4)	25,420 (113.0)

Tabulated load values are applicable for carbon steel anchors.
 Tabulated load values are for anchors installed in concrete. Concrete compressive strength must be at the specified minimum at the time of installation.

3 Ultimate load capacities must be reduced by a minimum safety factor of 4.0 or greater to determine allowable working load. Consideration of safety factors of 10 or higher may be necessary depending upon the application such as life safety, or overhead.

MECHANICA

Allowable Load Capacities for Wedge-Bolt OT installed in Normal-Weight Concrete at 16 Diameters Spacing and Edge Distances^{1,2,3,4}

Nominal	Minimum	Spacing	Minimum Concrete Compressive Strength (f'c)					
Diameter	Depth	Distance at	2,000 psi	(13.8 MPa)	4,000 psi	(27.6 MPa)	6,000 psi	(41.4 MPa)
d in.	<i>h</i> _v in.	16 <i>d</i> in.	Tension Ibs.	Shear lbs.	Tension lbs.	Shear lbs.	Tension Ibs.	Shear lbs.
(mm)	(mm)	(mm)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)
	(25.4)		(1.0)	(1.0)	(1.7)	(2.1)	(1.9)	(2.4)
1/4	1 1/2 (38.1)	4	440 (2.0)	585 (2.6)	590 (2.7)	630 (2.8)	620 (2.8)	610 (2.7)
(6.4)	2 (50.8)	(101.6)	700 (3.2)	630 (2.8)	1,060 (4.8)	630 (2.8)	1,245 (5.6)	765 (3.4)
	2 1/2 (63.5)		1,055 (4.7)	701 (3.1)	1,225 (5.5)	700 (3.1)	1,315 (5.9)	835 (3.7)
	1 1/2 (38.1)		535 (2.4)	735 (3.2)	665 (3.0)	998 (4.3)	760 (3.4)	1,505 (6.6)
	2 (50.8)		825 (3.7)	925 (4.1)	1,030 (4.6)	1,130 (5.0)	1,300 (5.9)	1,505 (6.6)
3/8 (9,5)	2 1/2 (63.5)	6 (152.4)	1,115 (5.0)	1,115 (4.9)	1,390 (6.3)	1,265 (5.6)	1,835 (8.3)	1,505 (6.6)
	3 (76.2)		1,545 (7.0)	1,300 (5.7)	1,995 (9.0)	1,395 (6.2)	2,475 (11.1)	1,535 (6.8)
	3 1/2 (88.9)		1,975 (8.9)	1,490 (6.6)	2,600 (11.7)	1,525 (6.7)	3,110 (14.0)	1,560 (6.9)
	2 (50.8)		740 (3.3)	1,425 (6.3)	985 (4.4)	1,615 (7.1)	1,195 (5.4)	1,960 (8.7)
	2 1/2 (63.5)	8 (203.2)	1,025 (4.6)	1,615 (7.1)	1,300 (5.9)	1,735 (7.7)	1,620 (7.3)	2,110 (9.3)
1/2 (12.7)	3 (76.2)		1,480 (6.7)	1,675 (7.4)	1,950 (8.8)	1,900 (8.4)	2,345 (10.6)	2,110 (9.3)
	3 1/2 (88.9)		1,515 (6.8)	1,920 (8.5)	2,120 (9.5)	2,100 (9.3)	2,975 (13.4)	2,150 (9.5)
	4 (101.6)		1,905 (8.6)	2,165 (9.7)	3,315 (14.9)	2,100 (9.3)	3,315 (14.9)	2,400 (10.8)
	2 1/2 (63.5)		855 (3.8)	1,950 (8.8)	1,180 (5.3)	2,690 (11.9)	1,725 (7.8)	2,585 (11.4)
	3 (76.2)	. 10 . (254.0)	1,140 (5.1)	2,150 (9.5)	1,845 (8.3)	2,690 (11.9)	2,240 (10.1)	2,720 (12.0)
5/8	3 1/2 (88.9)		1,430 (6.4)	2,350 (10.4)	2,510 (11.3)	2,690 (11.9)	2,760 (12.4)	2,850 (12.6)
(15.9)	4 (101.6)		2,070 (9.3)	2,610 (11.6)	3,190 (14.4)	2,925 (13.0)	3,580 (16.1)	3,025 (13.4)
	4 1/2 (114.3)		2,715 (12.2)	2,870 (12.7)	3,875 (17.4)	3,160 (14.0)	4,400 (19.8)	3,200 (14.2)
	5 (127.0)		3,360 (15.1)	3,130 (13.9)	4,555 (20.5)	3,395 (15.1)	5,215 (23.5)	3,375 (15.0)
	3 (76.2)		1,080 (4.9)	2,425 (10.7)	1,620 (7.3)	3,065 (13.6)	2,565 (11.5)	3,710 (16.5)
	3 1/2 (88.9)		1,440 (6.5)	2,755 (12.2)	2,330 (10.5)	3,560 (15.8)	3,035 (13.7)	4,150 (18.4)
	4 (101.6)		1,800 (8.1)	3,085 (13.7)	3,035 (13.7)	4,545 (20.2)	3,505 (15.8)	4,510 (20.0)
3/4 (19.1)	4 1/2 (114.3)	12 (304.8)	2,450 (11.0)	3,695 (16.4)	3,410 (15.3)	4,915 (21.8)	4,180 (18.8)	4,970 (22.1)
	5 (127.0)		3,100 (14.0)	4,310 (19.1)	3,780 (17.0)	5,290 (23.5)	4,850 (21.8)	5,430 (24.1)
	5 1/2 (139.7)		3,750 (16.9)	4,920 (21.8)	4,150 (18.7)	5,660 (25.1)	5,520 (24.8)	5,895 (26.2)
	6 (152.4)		4,395 (19.8)	5,535 (24.6)	4,520 (20.3)	6,030 (26.8)	6,190 (27.9)	6,355 (28.2)

1. Tabulated load values are applicable for carbon steel anchors.

2. Allowable load capacities listed are calculated using an applied safety factor of 4.0. Consideration of safety factors of 10 or higher may be necessary depending on the application, such as life safety or overhead.

3. Linear interpolation may be used to determine allowable loads for intermediate embedments and compressive strengths.

4. Tabular loads are for an chors installed at a minimum spacing distance between anchors and an edge distance of 16 times the anchor diameter.

MECHANICAL

ANCHO

Ultimate and Allowable Shear Load Capacities for Wedge-Bolt OT at 1-3/4" Edge of Normal-Weight Concrete^{1,2,3}

			f´c ≥ 2,000 psi (13.8 MPa)			
Nominal	Minimum	Minimum	Parallel to the Free Edge			
Anchor	Embedment	Edge				
Diameter d in. (mm)	Depth h _v in. (mm)	Distance in. (mm)	Ultimate Shear Ibs. (kN)	Allowable Shear Ibs. (kN)		
1/2	3 3/8	1 3/4	5,020	1,255		
(12.7)	(85.7)	(44.5)	(22.6)	(5.6)		
5/8	3 3/8	1 3/4	5,420	1,355		
(15.9)	(85.7)	(44.5)	(24.4)	(6.1)		
3/4	3 3/8	1 3/4	5,660	1,415		
(19.1)	(85.7)	(44.5)	(25.5)	(6.4)		

1. Tabulated load values are applicable to carbon steel anchors.

Allowable load capacities are calculated using an applied safety factor of 4.0. Consideration of safety factors of 10 or higher may 2 be necessary depending on the application, such as life safety or overhead.

3. Tabulated load values are for anchors installed in concrete. Concrete compressive strength must be at the specified minimum at the time of installation.

Ultimate and Allowable Tension Load Capacities for Wedge-Bolt OT Installed at the Edge of Normal-Weight Concrete^{1,2,3}

Nominal	Min.	Min.	Minimum Concrete Compressive Strength					h (f´ _c)
Dia.	Depth	Distance	2,500 psi ((17.2 MPa)	3,000 psi ((20.7 MPa)	4,000 psi	(27.6 MPa)
d in.	h _v in.	in.	Ultimate Ibs.	Allow.	Ultimate Ibs.	Allow.	Ultimate	Allow.
5/8	8 (203.2)	1-3/4	15,630 (70.3)	3,910 (17.6)	16,630 (74.8)	4,160 (18.7)	18,150 (81.7)	4,540 (20.4)
(15.9)	9 (228.6)	(44.5)	16,995 (76.5)	4,250 (19.1)	18,185 (81.8)	4,545 (20.5)	19,820 (89.2)	4,955 (22.3)

1. Allowable load capacities are calculated using an applied safety factor of 4.0. Consideration of safety factors of 10 or higher may be necessary depending on the application, such as life safety or overhead.

 Linear interpolation may be used to determine allowable loads for intermediate embedments and compressive strength.
 Tabulated load values are for anchors installed in concrete. Concrete compressive strength must be at the specified minimum at the time of installation.

Allowable Load Capacities for Wedge-Bolt OT Installed at 1-3/4" Edge of Normal-Weight Concrete Stem Walls^{1,2,3,4}

			f′ _c ≥ 2	2,500 psi (17.2	2 MPa)
Nominal Anchor Diameter	Minimum Embedment Depth	Minimum Edge Distance		Parallel to the Free Edge	Towards the Free Edge
d in. (mm)	<i>h</i> ν in. (mm)	in. (mm)	Tension Ibs. (kN)	Shear Ibs. (kN)	Shear Ibs. (kN)
1/2 (12.7)	4 (101.6)	1 3/4 (44.5)	1,270 (5.7)	1,425 (6.4)	470 (2.1)
	2 1/2 (63.5)		610 (2.7)	1,155 (5.2)	380 (1.7)
5/8 (15.9)	3 3/4 (95.3)	1 3/4 (44.5)	1,310 (5.9)	1,330 (6.0)	490 (2.2)
	5 (127.0)		2,015 (9.1)	1,505 (6.8)	600 (2.7)

Tabulated load values are applicable to carbon steel anchors.
 Allowable load capacities are calculated using an applied safety factor of 4.0. Consideration of safety factors of 10 or higher may be necessary depending on the application, such as life safety or overhead.
 Allowable load capacities may also be applied to conditions at the edge of normal-weight concrete slabs.

4. Tabulated load values are for anchors installed in concrete. Concrete compressive strength must be at the specified minimum at the time of installation.

Ultimate and Allowable Load Capacities for Wedge-Bolt OT installed in Structural Lightweight Concrete^{1,2,3,4,5}

Nominal	Minimum	Minimum C	Minimum Concrete Compressive Strength $f'_c \ge 3,000$ psi (20.7 MPa)					
Diameter	Depth	Ultima	te Load	Allowa	ble Load			
d	<i>h</i> _v	Tension	Shear	Tension	Shear			
in.	in.	Ibs.	Ibs.	Ibs.	Ibs.			
(mm)	(mm)	(kN)	(kN)	(kN)	(kN)			
1/4	2	3,320	2,720	830	680			
(6.4)	(50.8)	(14.9)	(12.1)	(3.7)	(3.0)			
	1 1/2	2,220	2,200	555	550			
	(38.1)	(10.0)	(9.9)	(2.5)	(2.5)			
3/8	2 1/4	3,760	3,240	940	810			
(9.5)	(57.2)	(16.9)	(14.4)	(4.2)	(3.6)			
	3	5,280	4,660	1,320	1,165			
	(76.2)	(23.8)	(20.7)	(5.9)	(5.1)			
	2	2,920	5,360	730	1,340			
	(50.8)	(13.1)	(23.6)	(3.3)	(5.9)			
1/2	3	5,320	7,320	1,330	1,830			
(12.7)	(76.2)	(23.9)	(32.5)	(6.0)	(8.1)			
	4	7,720	9,260	1,930	2,315			
	(101.6)	(34.7)	(41.1)	(8.7)	(10.2)			
	2 1/2	3,720	9,240	930	2,310			
	(63.5)	(16.7)	(41.6)	(4.2)	(10.4)			
5/8	3 3/4	7,940	10,960	1 ,985	2,740			
(15.9)	(95.3)	(35.7)	(48.7)	(8.9)	(12.1)			
	5	12,160	14,940	3,040	3,735			
	(127.0)	(54.7)	(66.4)	(13.7)	(16.6)			
3/4	5 1/4 (133.4)	13,320	17,780	3,330	4,445			
(19.1)		(59.9)	(79.0)	(15.0)	(19.7)			

1. Tabulated load values are for anchors installed in sand-lightweight concrete. Concrete compressive strength must be at the specified minimum at the time of installation.

2. Allowable load capacities are calculated using an applied safety factor of 4.0. Consideration of safety factors of 10 or higher may be necessary depending on the application, such as life safety or overhead.

3. Critical and minimum spacing and edge distances as well as reduction factors for intermediate spacing and edge distances are listed in the Design Criteria section.

Linear interpolation for allowable loads for anchors at intermediate embedment depths may also be used.
 Tabulated load values are applicable to carbon steel anchors.

MECHANICAI

Ultimate Load Capacities for 410 Stainless Steel Wedge-Bolt in Normal-Weight Concrete^{1,2}

Nominal	Minimum	Minimum Concrete Compressive Strength (f' _c)					
Diameter	Depth	2,500 psi (17.3 MPa)	3,000 psi (20.7 MPa)			
d	h _v	Tension	Shear	Tension	Shear		
in.	in.	Ibs.	Ibs.	Ibs.	Ibs.		
(mm)	(mm)	(kN)	(kN)	(kN)	(kN)		
1/4	1	880	1,535	960	1,680		
(6.3)	(25.4)	(3.9)	(6.8)	(4.3)	(7.5)		
3/8	1 1/2	1,615	3,590	1,770	3,930		
	(38.1)	(7.3)	(16.2)	(8.0)	(17.7)		
(9.5)	2 1/8	3,400	4,584	3,725	5,025		
	(54.0)	(15.3)	(20.7)	(18.0)	(22.6)		
1/2	2 1/2	3,650	7,335	4,000	8,035		
	(63.5)	(16.4)	(33.0)	(18.0)	(36.2)		
(12.7)	3 1/2 (88.9)	7,495 (33.8)	9,880 (44.5)	8,210 (37.0)	10,825 (48.8)		

1. Tabulated load values are for anchors installed in concrete. Concrete compressive strength must be at the specified minimum at the time of installation.

2. The values listed above are ultimate load capacities which should be reduced by a minimum safety factor of 4.0 to determine the allowable working load. Consideration of safety factors of 10 or higher may be necessary depending on the application, such as life safety or overhead.

Allowable Load Capacities for 410 Stainless Steel Wedge-Bolt in Normal-Weight Concrete^{1,2}

Nominal	Minimum	Minimum Concrete Compressive Strength (f'_c)				
Diameter	Depth	2,500 psi	(17.3 MPa)	3,000 psi (20.7 MPa)		
d	μ,	Tension	Shear	Tension	Shear	
in.	in.	Ibs.	Ibs.	Ibs.	Ibs.	
(mm)	(mm)	(kN)	(kN)	(kN)	(kN)	
1/4	1	220	380	240	420	
(6.3)	(25.4)	(1.0)	(1.7)	(1.1)	(1.9)	
3/8	1 1/2	405	900	445	985	
	(38.1)	(1.8)	(4.1)	(2.0)	(4.4)	
(9.5)	2 1/8	850	1,145	930	1,255	
	(54.0)	(3.8)	(5.2)	(4.2)	(5.7)	
1/2	2 1/2 (63.5)	915 (4.1)	1,835 (8.3)	1,000 (4.5)	2,010 (9.1)	
(12.7)	3 1/2	1,875	2,470	2,055	2,705	
	(88.9)	(8.4)	(11.1)	(9.3)	(12.2)	

1. Allowable load capacities listed are calculated using an applied safety factor of 4.0. Consideration of safety factors of 10 or higher may be necessary depending on the application, such as life safety or overhead.

2. Linear interpolation may be used to determine ultimate loads for intermediate embedments and compressive strengths.

Wedge-Bolt (OT & SS)

PERFORMANCE DATA

Allowable Load Capacities for Wedge-Bolt OT Anchors Installed in Grout-Filled Concrete Masonry^{1,2,3,4,5,6}

Face Shell (Grouted Cell) **Permissible Anchor Locations** (Unshaded Area)

Anchor Installed Through Face Shell Into Grouted Cell							
Nominal Anchor Diameter	Minimum Embed. Depth	Minimum Edge Distance	Minimum End Distance	Tension	Shear		
in. (mm)	in. (mm)	in. (mm)	in. (mm)	lbs. (kN)	Ibs. (kN)		
1/4	1 (25.4)	3 3/4	3 3/4	80 (0.4)	150 (0.7)		
(6.4)	2 (50.8)	(95.3)	(95.3)	340 (1.5)	310 (1.4)		
	1 1/2 (38.1)	2 (50.8)	3 3/4 (95.3)	210 (0.9)	340 (1.5)		
	1 1/2 (38.1)	3 3/4 (95.3)	12 (304.8)	210 (0.9)	400 (1.8)		
3/8 (9.5)	2 1/2 (63.5)	2 (50.8)	3 3/4 (95.3)	670 (3.0)	340 (1.5)		
	2 1/2 (63.5)	7 7/8 (200.0)	12	750 (3.4)	655 (2.9)		
	3 1/2 (88.9)	12 (304.8)	(304.8)	1,290 (5.8)	910 (4.0)		
	2 (50.8)	3 3/4 (95.3)	12 (304.8)	335 (1.5)	720 (3.2)		
1/2 (12.7)	3 (76.2)	7 7/8 (200.0)		930 (4.2)	900 (4.0)		
	4 (101.6)	12 (304.8)		1,525 (6.9)	1,085 (4.8)		
	2 1/2 (63.5)	3 3/4 (95.3)		455 (2.0)	1,085 (4.8)		
5/8	3 1/4 (82.6)	7 7/8 (200.0)	12	885 (4.0)	1,085 (4.8)		
(15.9)	4 (101.6)	12	(304.8)	1,310 (5.9)	1,085 (4.8)		
	5 (127.0)	(304.8)		1,940 (8.7)	1,255 (5.6)		
	3	3 3/4 (95.3)		615 (2.8)	750 (3.4)		
	(76.2)	12 (304.8)		615 (2.8)	1,320 (5.9)		
3/4 (19.1)	3 1/2 (88.9)	7 7/8 (200.0)	12 (304.8)	1,035 (4.7)	1,265 (5.7)		
	4 (101.6)	12		1,455 (6.5)	1,320 (5.9)		
	5 (127.0)	(304.8)		1,680 (7.6)	1,775 (7.9)		

1. Tabulated load values are for anchors installed in minimum 6-inch wide, minimum Grade N, Type II, lightweight, medium-weight

 Tabulated load values are for anchors installed in minimum 6-inch wide, minimum Grade N, type II, lightweight, medium-weight or normal-weight concrete masonry units conforming to ASTM C 90. Mortar must be minimum Type N. Masonry compressive strength must be at the specified minimum at the time of installation (fm ≥ 1,500 psi).
 Allowable load capacities listed are calculated using an applied safety factor of 5.0. Consideration of safety factors of 10 or higher may be necessary depending on the application, such as life safety or overhead.
 Tabulated load values are applicable for screw anchors installed at a critical spacing between anchors of 16 times the anchor diameter. Reduce the tabulated load capacities by 50 percent when anchors are installed at minimum spacing between anchors of 8 times theorem cover diameter. anchors of 8 times the screw anchor diameter. Linear interpolation may be used for intermediate spacing distances.

Linear interpolation for allowable loads for anchors at interpolations into the mediate to the mediate specific structure.
 Allowable shear loads for 1/4" and 3/8" diameter anchor installations into the face shell of a masonry wall may be applied in any

Allowable shear loads for 1/4 and 3/8 dialneed anchor installations into the face shell of a flasbing war hay be applied in any direction. Allowable shear loads for anchor diameters 1/2" and greater installed into the face shell may be applied in any direction provided the location is a minimum of 12" from the edge and end of the wall. For anchors diameters 1/2" and greater installed with an edge distance less than 12" the allowable shear loads may be applied in any direction except upward vertically.
 6. Tabulated load values are applicable to carbon steel anchors.

ANCHORS

Face Shell (Cell Web)

Anchor Installed Through Face Shell Into Cell Web'							
Nominal Anchor Diameter	Minimum Embed. Depth	Minimum Edge Distance	Minimum End Distance	Tension	Shear		
in. (mm)	<i>n</i> v in. (mm)	in. (mm)	in. (mm)	Ibs. (kN)	Ibs. (kN)		
3/8 (9.5)	3 1/2 (25.4)			870 (3.9)	910 (4.0)		
1/2 (12.7)	4 (101.6)	16	16	1,110 (5.0)	1,085 (4.8)		
5/8 (15.9)	4 (101.6)	(406.4)	(406.4)	1,205 (5.4)	1,085 (4.8)		
3/4 (19.1)	4 (101.6)			1,310 (5.9)	1,320 (5.9)		

T-Joints Permissible Anchor Locations

Top of Wall

Anchor Installed In Joint ^{6,7}								
Nominal Anchor Diameter d	Minimum Embed. Depth	Minimum Edge Distance	Minimum End Distance	Tension	Shear			
in. (mm)	in. (mm)	in. (mm)	in. (mm)	lbs. (kN)	lbs. (kN)			
3/8	1 1/2 (38.1)			-				
(9.5)	3 1/2 (88.9)			830 (3.7)	510 (2.3)			
1/2 (12.7)	4 (101.6)	16	16	1,090 (4.9)				
5/8 (15.9)	4 (101.6)	(406.4)	(406.4)	840 (3.8)				
3/4 (19.1)	2 1/2 (63.5)			-	1,225 (5.5)			
	4 (101.6)			890 (4.0)				

Anchor Installed in Cell Opening (Top of Wall)						
Nominal Anchor Diameter d	Minimum Embed. Depth hy	Minimum Edge Distance	Tension	Shear		
in. (mm)	in. (mm)	in. (mm)	lbs. (kN)	lbs. (kN)		
	2 1/2 (63.5)	1 1/2 (38.1)	300 (1.6)	240 (1.1)		
3/8 (9.5)	1 1/2 (38.1)	2	-	350 (1.6)		
	2 1/2 (63.5)	(50.8)	570 (2.5)	380 (1.7)		

Tabulated load values are for anchors installed in minimum 6-inch wide, minimum Grade N, Type II, lightweight, medium-weight or normal-weight concrete masonry units conforming to ASTM C 90. Mortar must be minimum Type N. Masonry compressive strength must be at the specified minimum at the time of installation (f^{*}m ≥ 1,500 psi).
 Allowable load capacities listed are calculated using an applied safety factor of 5.0. Consideration of safety factors of 10 or higher may be necessary depending on the application, such as life

safety or overhead.

3. Tabulated load values are applicable for screw anchors installed at a critical spacing between screw anchors of 16 times the screw anchor diameter. Reduce the tabulated load capacities by 50 percent when anchors are installed at minimum spacing between anchors of 8 times the screw anchor diameter. Linear interpolation may be used for intermediate capacities by 50 percent when anchors are installed at minimum spacing between anchors or 8 times the screw anchor orallered. Linear interpolation may be used to intermediate embedment depths may be used.
4. Linear interpolation for allowable loads for anchors at intermediate embedment depths may be used.
5. Allowable shear loads for anchor installations into the cell web may be applied in any direction.
6. Allowable shear loads for anchor installations with an edge distance less than 16" the allowable shear loads may be applied in any direction provided the anchor location is a minimum of 16" from the edge and end of the wall. For anchor installed into horizontal motar (bed) joint locations may be increased by 35 percent.
7. Allowable tension load values for anchors installed into horizontal motar (bed) joint locations may be increased by 35 percent.

8. Tabulated load values are applicable to carbon steel anchors.

Ultimate and Allowable Load Capacities for Wedge-Bolt OT Anchors Installed in Multiple Wythe Brick Masonry^{1,2,3}

	 – Minimum	End Distance
+		
Minimum Edge Distance		

Nominal Minimum Minimum Mi		Minimum	Sti f'i	ructural B n ≥ 1,500	r ick Masor psi (10.4 Ml	nry Pa)	
Anchor Diameter	Embed. Depth	Edge and Fnd	Spacing Distance	Ultimat	te Load	Allowa	ole Load
d in. (mm)	<i>h</i> v in. (mm)	Distance in. (mm)	in. (mm)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)
1/4	2 1/2 (63.5)	4	4	2,280	1,480	455	295
(6.4)		(101.6)	(101.6)	(10.3)	(6.7)	(2.0)	(1.3)
3/8	3 1/2 (88.9)	6	6	3,390	3,830	680	765
(9.5)		(152.4)	(152.4)	(15.3)	(17.2)	(3.1)	(3.4)
1/2	4	8	8	4,800	7,060	960	1,410
(12.7)	(101.6)	(203.2)	(203.2)	(21.6)	(31.8)	(4.3)	(6.3)
5/8	4	10	12	6,120	11,250	1,225	2,250
(15.9)	(101.6)	(254.0)	(304.8)	(27.5)	(50.6)	(5.5)	(10.1)
3/4	4	12	16	8,580	12,340	1,315	2,470
(19.1)	(101.6)	(304.8)	(406.4)	(29.6)	(55.5)	(5.9)	(11.1)

1. Tabulated load values are for anchors installed in multiple wythe, minimum Grade SW, solid clay brick masonry walls conforming to ASTM C 62. Mortar must be minimum Type N. Masonry compressive strength must be at the specified minimum at the time of installation ($f'm \ge 1,500$ psi).

 Allowable load capacities listed are calculated using and applied safety factor of 5.0. Consideration of safety factors of 10 or higher may be necessary depending upon the application such as life safety or overhead.

3. Tabulated load values are applicable to carbon steel anchors.

DESIGN CRITERIA (ALLOWABLE STRESS DESIGN) Combined Loading

For anchors loaded in both shear and tension, the combination of loads should be proportioned as follows:

$$\left(\frac{N_u}{N_n}\right) + \left(\frac{V_u}{V_n}\right) \le 1$$

Where: N_u = Applied Service Tension Load

- N_n = Allowable Tension Load V_u = Applied Service Shear Load
 - V_n = Allowable Shear Load

Load Adjustment Factors for Spacing and Edge Distances¹

Anchor Installed in Normal-Weight Concrete									
Anchor Dimension	Load Type	Critical Distance (Full Anchor Capacity)	Critical Load Factor	Minimum Distance (Reduced Capacity)	Minimum Load Factor				
Spacing (c)	Tension	<i>Scr</i> = 12 <i>d</i>	$F_{N_{S}} = 1.0$	smin = 4d	$F_{N_{S}} = 0.50$				
Spacing (S)	Shear	<i>s</i> _{cr} = 12 <i>d</i>	$F_{V_{S}} = 1.0$	smin = 4d	$F_{V_{S}} = 0.75$				
Edge Distance (c)	Tension	Ccr = 8d	$F_{N_{C}} = 1.0$	Cmin = 3 d	$F_{N_{C}} = 0.70$				
Luge Distance (C)	Shear	$C_{cr} = 12 d$	$F_{V_C} = 1.0$	Cmin = 3 d	$F_{V_C} = 0.15$				

	Anchor Installed in Structural Lightweight Concrete								
Anchor Dimension	Load Type	Critical Distance (Full Anchor Capacity)	Critical Load Factor	Minimum Distance (Reduced Capacity)	Minimum Load Factor				
Spacing (s)	Tension	<i>Scr</i> = 14.1 <i>d</i>	$F_{N_{S}} = 1.0$	s _{min} = 4.7d	$F_{N_{S}} = 0.50$				
Spacing (3)	Shear	<i>Scr</i> = 14.1 <i>d</i>	$F_{V_{S}} = 1.0$	<i>s</i> _{min} = 4.7 d	$F_{V_{S}} = 0.75$				
Edgo Distanco (c)	Tension	$C_{cr} = 9.4d$	$F_{N_{C}} = 1.0$	c _{min} = 3.5 d	$F_{N_{C}} = 0.70$				
Euge Distance (C)	Shear	c _{cr} = 14.1d	$F_{V_C} = 1.0$	<i>c</i> _{min} = 3.5 <i>d</i>	$F_{V_C} = 0.15$				

1. Allowable load values found in the performance data tables are multiplied by reduction factors when anchor spacing or edge distances are less than critical distances. Linear interpolation is allowed for intermediate anchor spacing and edge distances between critical and minimum distances. When an anchor is affected by both reduced spacing and edge distance, the spacing and edge reduction factors must be combined (multiplied). Multiple reduction factors for anchor spacing and edge distance may be required depending on the anchor group configuration.

ANCH

DESIGN CRITERIA (ALLOWABLE STRESS DESIGN)

Load Adjustment Factors for Normal-Weight Concrete

Spacing, Tension (<i>F_{Ns}</i>)									
Dia	. (in.)	1/4	3/8	1/2	5/8	3/4			
S _{cr}	(in.)	3	4 1/2	6	7 1/2	9			
S _{mi}	n (in.)	1	1 1/2	2	2 1/2	3			
	1	0.50							
s)	1 1/2	0.63	0.50						
he	2	0.75	0.58	0.50					
(ine	2 1/2	0.88	0.67	0.56	0.50				
S	3	1.00	0.75	0.63	0.55	0.50			
ing	4 1/2		1.00	0.81	0.70	0.63			
aci	6			1.00	0.85	0.75			
SF	7 1/2				1.00	0.88			
	9					1.00			

Notes: For anchors loaded in tension, the critical spacing (s_{cr}) is equal to 12 anchor diameters (12*d*) at which the anchor achieves 100% of load. Minimum spacing (s_{min}) is equal to 4 anchor diameters (4*d*) at which the anchor achieves 50% of load.

Notes: For anchors loaded in shear, the critical spacing (s_{cr}) is equal to 12 anchor diameters (12 d) at which the anchor achieves 100% of load. Minimum spacing (s_{min}) is equal to 4 anchor diameters (4d) at which the anchor achieves 75% of load.

Notes: For anchors loaded in tension, the critical edge distance (c_{cr}) is equal to 8 anchor diameters (8*d*) at which the anchor achieves 100% of load. Minimum edge distance (c_{min}) is equal to 3 anchor diameters (3*d*) at which the anchor achieves 70% of load.

Notes: For anchors loaded in shear, the critical edge distance (c_{cr}) is equal to 12 anchor diameters (12*d*) at which the anchor achieves 100% of load. Minimum edge distance (c_{min}) is equal to 3 anchor diameters (3*d*) at which the anchor achieves 15% of load

	Spacing, Shear (<i>F_{VS}</i>)										
Dia. (in.) 1/4 3/8 1/2 5/8 3/4											
<i>S_{cr}</i> (in.)		3	4 1/2	6	7 1/2	9					
Smi	n (in.)	1	1 1/2	2	2 1/2	3					
	1	0.75									
S)	1 1/2	0.81	0.75								
he	2	0.88	0.79	0.75							
(jn	2 1/2	0.94	0.83	0.78	0.75						
s,	3	1.00	0.88	0.81	0.78	0.75					
ing	4 1/2		1.00	0.91	0.85	0.81					
aci	6			1.00	0.93	0.88					
S	7 1/2				1.00	0.94					
	9					1.00					

	Edge Distance, Tension (<i>F_{NC}</i>)										
Dia. (in.) 1/4 3/8 1/2 5/8 3/4											
Ccr	(in.)	2	3	4	5	6					
Cmi	in (in.)	3/4	1 1/8	1 1/2	1 7/8	2 1/4					
	3/4	0.70									
\	1 1/8	0.79	0.70								
(in	1 1/2	0.88	0.76	0.70							
U at	1 7/8	0.97	0.82	0.75	0.70						
nce	2	1.00	0.84	0.76	0.71						
sta	2 1/4		0.88	0.79	0.74	0.70					
ö	3		1.00	0.88	0.81	0.76					
lge	4			1.00	0.90	0.84					
Ш	5				1.00	0.92					
	6					1.00					

	Edge Distance, Shear (<i>F_{VC}</i>)									
Dia. (in.) 1/4 3/8 1/2 5/8 3/4										
Ccr	(in.)	3	4 1/2	6	7 1/2	9				
Cmi	in (in.)	3/4	1 1/8	1 1/2	1 7/8	2 1/4				
	3/4	0.15								
	1 1/8	0.29	0.15							
Ŀ.	1 1/2	0.43	0.24	0.15						
di di	1 7/8	0.58	0.34	0.22	0.15					
ů,	2 1/4	0.72	0.43	0.29	0.21	0.15				
sta	3	1.00	0.62	0.43	0.32	0.24				
ā	4 1/2		1.00	0.72	0.55	0.43				
lge	6			1.00	0.77	0.62				
Ш	7 1/2				1.00	0.81				
	9					1.00				

DESIGN CRITERIA (ALLOWABLE STRESS DESIGN)

Load Adjustment Factors for Lightweight Concrete

	Spacing, Tension (<i>F_{Ns}</i>)									
Dia	. (in.)	1/4	3/8	1/2	5/8	3/4				
S _{cr}	(in.)	3 1/2	5 1/4	7	8 7/8	10 1/2				
Smi	n (in.)	1 1/4	1 3/4	2 3/8	3	3 1/2				
	1 1/4	0.50								
ŝ	1 3/4	0.61	0.50							
-he	2 3/8	0.75	0.59	0.50						
Ŀ.	3	0.89	0.67	0.57	0.50					
S	3 1/2	1.00	0.74	0.62	0.54	0.50				
ing	5 1/4		1.00	0.82	0.70	0.63				
g	7			1.00	0.84	0.75				
5	8 7/8				1.00	0.88				
	10 1/2					1.00				

Notes: For anchors loaded in tension, the critical spacing (s_{cr}) is equal to 14.1 anchor diameters (14.1*d*) at which the anchor achieves 100% of load. Minimum spacing (s_{min}) is equal to 4.7 anchor diameters (4.7*d*) at which the anchor achieves 50% of load.

Notes: For anchors loaded in shear, the critical spacing (s_{cr}) is equal to 14.1 anchor diameters (14.1d) at which the anchor achieves 100% of load. Minimum spacing (s_{min}) is equal to 4.7 anchor diameters (4.7d) at which the anchor achieves 75% of load.

Notes: For anchors loaded in tension, the critical edge distance (c_{cr}) is equal to 9.4 anchor diameters (9.4*d*) at which the anchor achieves 100% of load. Minimum edge distance (c_{min}) is equal to 3.5 anchor diameters (3.5*d*) at which the anchor achieves 70% of load.

Notes: For anchors loaded in shear, the critical edge distance (c_{cr}) is equal to 14.1 anchor diameters (14.1 *d*) at which the anchor achieves 100% of load. Minimum edge distance (c_{min}) is equal to 3.5 anchor diameters (3.5*d*) at which the anchor achieves 15% of load.

	Spacing, Shear (F _{VS})									
Dia	. (in.)	1/4	3/8	1/2	5/8	3/4				
S _{cr}	(in.)	3 1/2	5 1/4	7	8 7/8	10 1/2				
S mi	n (in.)	1 1/4	1 3/4	2 3/8	3	3 1/2				
	1 1/4	0.75								
ŝ	1 3/4	0.81	0.75							
-Pe	2 3/8	0.88	0.79	0.75						
ij	3	0.94	0.84	0.78	0.75					
S	3 1/2	1.00	0.87	0.81	0.77	0.75				
ing	5 1/4		1.00	0.91	0.85	0.82				
Jac	7			1.00	0.92	0.88				
2	8 7/8				1.00	0.94				
	10 1/2					1.00				

	Edge Distance, Tension (<i>F_{NC}</i>)									
Dia	ı. (in.)	1/4	3/8	1/2	5/8	3/4				
Ccr	(in.)	2 3/8	3 1/2	4 3/4	5 7/8	7				
Cmi	in (in.)	7/8	1 3/8	1 3/4	2 1/4	2 5/8				
	7/8	0.70								
·	1 3/8	0.80	0.70							
(in	1 3/4	0.88	0.76	0.70						
0	2 1/4	0.98	0.83	0.75	0.70					
nce	2 3/8	1.00	0.84	0.76	0.72					
sta	2 5/8		0.88	0.79	0.74	0.70				
D	3 1/2		1.00	0.88	0.81	0.76				
dge	4 3/4			1.00	0.91	0.84				
ы	5 7/8				1.00	0.92				
	7					1.00				

	Edge Distance, Shear (<i>F_{VC}</i>)									
Dia	. (in.)	1/4	3/8	1/2	5/8	3/4				
Ccr	(in.)	3 1/2	5 1/4	7	8 7/8	10 1/2				
Cmi	n (in.)	7/8	1 3/8	1 3/4	2 1/4	2 5/8				
	7/8	0.15								
	1 3/8	0.31	0.15							
<u>.</u>	1 3/4	0.43	0.24	0.15						
U of	2 1/4	0.59	0.35	0.23	0.15					
ů,	2 5/8	1.00	0.43	0.29	0.21					
sta	3 1/2		0.62	0.43	0.32	0.15				
ā	5 1/4		1.00	0.71	0.54	0.43				
ğ	7			1.00	0.77	0.62				
ш	8 7/8				1.00	0.82				
	10 1/2					1.00				

ORDERING INFORMATION

Carbon Steel Wedge-Bolt OT

Catalog Number	Size	Drill Bit Diameter	Clearance Hole Diameter	Minimum Embedment	Thread Length	Standard Box	Standard Carton
7215	1/4" x 3"	1/4"	3/8"	1"	2 3/4"	100	500
7216	3/8" x 4"	3/8"	1/2"	1 1/2"	3 3/4"	50	250
7217	1/2" x 4"	1/2"	5/8"	1 3/4"	3 3/4"	50	150
7218	1/2" x 5"	1/2"	5/8"	1 3/4"	3 3/4"	25	100
7214	1/2" x 6"	1/2"	5/8"	1 3/4"	3 3/4"	25	75
7233	1/2" x 6 1/2"	1/2″	5/8″	1 3/4″	3 3/4"	25	75
7219	5/8" x 4"	5/8"	3/4"	2 1/2"	3 3/4"	25	100
7221	5/8" x 5"	5/8"	3/4"	2 1/2"	3 3/4"	25	75
7227	5/8" x 6"	5/8"	3/4"	2 1/2"	3 3/4"	25	75
7229	5/8" x 7"	5/8"	3/4"	2 1/2"	3 3/4"	25	75
7231	3/4" x 6"	3/4″	7/8″	2 1/2"	4 1/2"	20	60
7232	3/4" x 8"	3/4″	7/8″	2 1/2"	6	10	40

Installation is recommended with the use of an ANSI bit.

410 Stainless Steel Wedge-Bolt

Catalog Number	Size	Wedge Bit Diameter	Clearance Hole Diameter	Minimum Embedment	Thread Length	Standard Box	Standard Carton
7701N	1/4" x 1 3/4"	1/4"	5/16"	1"	1 5/8"	100	500
7702N	3/8" x 1 3/4"	3/8"	5/16"	1"	1 5/8"	50	300
7705N	3/8" x 2 1/2"	3/8"	7/16"	1 1/2"	2 1/4"	50	250
7706N	3/8" x 3"	3/8"	7/16"	1 1/2"	2 3/4"	50	250
7707N	3/8" x 4"	3/8"	7/16"	1 1/2"	3 3/4"	50	250
7708N	3/8″ x 5″	3/8"	7/16"	1 1/2"	3 3/4"	50	150
7710N	1/2" x 3"	1/2"	9/16"	1 3/4"	2 3/4"	50	150
7711N	1/2" x 4"	1/2"	9/16"	1 3/4"	3 3/4"	50	150
7712N	1/2" x 5"	1/2"	9/16"	1 3/4"	3 3/4"	50	150

f

A Wedge-Bit is required for installation.