

Hubbell has the broadest line and the widest choice of materials in the industry. NPT hub sizes from $1 / 4$ " to 3 " in straight male end, $90^{\circ}, 45^{\circ}$, female and underground feed connectors. They are available in your choice of aluminum, plated steel, nylon and stainless steel.
Hubbell offers a full line of machined aluminum cord connectors in NPT hub sizes $1 / 4$ " through 1 " and cast aluminum $1^{\prime \prime}$ to 3 ". They provide durable performance and a clean attractive look without adding unwanted weight. NPT hub sizes $1 / 4$ " to 1 " feature an attractive knurled finish which makes them easy to handle and maintain a U.L. listing by hand tightening.
The zinc-plated steel cord connectors offers the strength of steel and the corrosion resistance of zinc-plating. These heavy-duty connectors hold up to most manufacturing chemicals including acid solutions, solvents and other corrosive materials.

Their machined steel nut and body allows for tightening the compression nut and NPT hub without worrying about stripping the threads. For larger size cord, NPT hub sizes 1 " to 2", Hubbell utilizes malleable iron connectors which provide excellent holding and liquidtight performance.
Hubbell's nylon cord connectors resist most common industrial corrosives and provide highly effective pullout protection in a lightweight design. They are ideal for any application where weight, conductivity or corrosion may be an issue. They're available in NPT hub sizes from $1 / 4$ " to $1^{\prime \prime}$.
Stainless steel cord connectors provide superior strength and corrosion resistance for industrial and military applications. They are machined from 300 series stainless steel and come in $1 / 4$ " to 1 ", NPT hub sizes.

Note: See pages V - 87 to V - 95 for technical information and dimensional drawings.
*IP66 Suitability when used with optional metal clad O-ring, see page V-84 for additional information.
**Cable jacket may have to be stripped to pass through connector body.
Locknuts sold separately. See page V-84 for additional information.

Kellems ${ }^{\circledR}$ Wire Management Products
Technical Information
Cord Connectors

Operating Temperatures

Material	Temperature Range	
Aluminum	$-40^{\circ} \mathrm{F}$ to $+300^{\circ} \mathrm{F}$	$\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+149^{\circ} \mathrm{C}\right)$
Nylon (connectors and GOTCHA ${ }^{\circledR}$ rings)	$-40^{\circ} \mathrm{F}$ to $+225^{\circ} \mathrm{F}$	$\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+107^{\circ} \mathrm{C}\right)$
Plated steel	$-60^{\circ} \mathrm{F}$ to $+1000^{\circ} \mathrm{F}$	$\left(-51^{\circ} \mathrm{C}\right.$ to $\left.+537^{\circ} \mathrm{C}\right)$
Stainless steel	$-60^{\circ} \mathrm{F}$ to $+1000^{\circ} \mathrm{F}$	$\left(-51^{\circ} \mathrm{C}\right.$ to $\left.+537^{\circ} \mathrm{C}\right)$
Neoprene (bushings)	$-30^{\circ} \mathrm{F}$ to $+240^{\circ} \mathrm{F}$	$\left(-34^{\circ} \mathrm{C}\right.$ to $\left.+115^{\circ} \mathrm{C}\right)$

Note: *Due to the limiting factors of nylon and neoprene, any complete cord connector with a GOTCHA ring, Form 1-5, will continuously perform in the range of -30F to $+225^{\circ} \mathrm{F}\left(-34^{\circ} \mathrm{C}\right.$ to $\left.+107^{\circ} \mathrm{C}\right)$.
Cord connectors without GOTCHA rings, Form 6-8, will continuously operate in the range $-30^{\circ} \mathrm{F}$ to $+240^{\circ} \mathrm{F}\left(-34^{\circ} \mathrm{C}\right.$ to $\left.+115^{\circ} \mathrm{C}\right)$ due to the limiting factor of neoprene.

Hazardous Locations

Hubbell cord connectors are suitable for use in hazardous locations per Class I Div. 2, Class II Div. 1 \& 2, Class III Div. 1 \& 2 in accordance with the NEC.

Flammability

Hubbell nylon cord connectors have a UL 94-V2 rating.

Approvals

Agency

UL Listed in accordance with Standard 514B for indoor/outdoor use.
CSA Certified
United States Coast Guard Approved, Title 46-Part 111.

Form Size Definition

The term "Form Size" refers to the physical overall size of a cord connector
Form 1 is the smallest size.
Form 8 is the largest size.

Knockout Holes

Knockout Hole RecommendedNPT Min. to Max.			Knockout Hole Recommended PG			Knockout Hole Recommended Metric		
Hub Size	Inches	(mm)	Hub Size	Inches	(mm)	Hub Size	Inches	(mm)
1/4	.54"-.57"	(13.7-14.5)	PG7	492"	(12.5)	M12	.472"	(12)
3/8	.67"-.70"	(17.0-17.8)	PG9	599"	(15.2)	M16	.629"	(16)
1/2	.86"-.91"	(21.8-23.0)	PG11	.733"	(18.6)	M20	.787"	(20)
3/4	1.04"-1.09"	(26.4-27.8)	PG13.5	.804"	(20.4)	M25	.984"	(25)
1	1.36"-1.41"	(34.5-35.7)	PG16	.888"	(22.5)	M32	1.25"	(32)
$11 / 4$	1.72"-1.77"	(43.7-44.9)	PG21	$1.15{ }^{\prime \prime}$	(28.3)	M40	1.57"	(40)
$11 / 2$	1.97"-2.02"	(50.0-51.2)	PG29	1.47"	(34.3)			
2	2.45"-2.50"	(62.3-63.5)	PG36	1.85"	(47.0)			
$21 / 2$	2.95"-3.00"	(75.0-76.2)						
3	3.58"-3.63"	(90.9-92.1)						

NPT, PG and Metric Thread Low Profile Connectors

Specifications

Material	6/6 Nylon.
Gland	Buna N.
Temperature Range	$-22^{\circ} \mathrm{F}$ to $225^{\circ} \mathrm{F}\left(-30^{\circ} \mathrm{C}\right.$ to $\left.107^{\circ} \mathrm{C}\right)$.
	Cord Connectors are Halogen and Silicon free.
Protection Class	IP66 Suitability.
Flammability	UL 94V-2.
Listings/Certifications	UL Listing File E-41567, UL Recognition File E-41567.
	CSA File LR27378C, VDE Marks Licence \#136681.

SECP29G

Straight Hubbell Connectors

F NPT Inches	Aluminum Inches (mm)					Nylon Inches (mm)							
	Form	A Dia.	B Ref.	C	DThroat Dia.	E		A Dia.	B Ref.	C	DThroat Dia.	E	
						A/C*	A/F*					A/C*	A/F*
1/4-18	1	$\begin{aligned} & \hline .88 " \\ & \hline(22.4) \end{aligned}$	$\begin{aligned} & \hline .90 " \\ & (22.9) \end{aligned}$	$\begin{aligned} & \hline .46 " \\ & (11.7) \end{aligned}$	$\begin{aligned} & \hline .32 " 1 \\ & \hline(8.1) \end{aligned}$	$\begin{aligned} & \hline .99 " \\ & (25.1) \end{aligned}$	$\begin{aligned} & \hline .88 " \\ & (22.4) \end{aligned}$	$\begin{aligned} & \hline 1.00 " \\ & (25.4) \end{aligned}$	$\begin{aligned} & \hline 1.10 " \\ & (27.9) \end{aligned}$	$\begin{aligned} & \hline .43 " \\ & (10.9) \end{aligned}$	$\begin{aligned} & \hline .33 " \\ & (8.4) \end{aligned}$	$\begin{aligned} & \hline 1.00 " \\ & (25.4) \end{aligned}$	$\begin{aligned} & \hline .93 " \\ & (23.6) \end{aligned}$
$3 / 8-18$	1	$\begin{aligned} & \hline .88 " \\ & (22.4) \end{aligned}$	$\begin{aligned} & \hline .90 " \\ & (22.9) \end{aligned}$	$\begin{aligned} & .46^{\prime \prime} \\ & (11.7) \end{aligned}$	$\begin{aligned} & .44 " \\ & (11.2) \end{aligned}$	$\begin{aligned} & \hline .99 " \\ & (25.1) \end{aligned}$	$\begin{aligned} & \hline .88 " \\ & (22.4) \end{aligned}$	$\begin{aligned} & \hline 1.00 " \\ & (25.4) \end{aligned}$	$\begin{aligned} & 1.10 " 1 \\ & (27.9) \end{aligned}$	$\begin{aligned} & \hline .43^{\prime \prime} \\ & (10.9) \end{aligned}$	$\begin{aligned} & \hline .45 " \\ & (11.4) \end{aligned}$	$\begin{aligned} & \hline 1.00 " \\ & .(25.4) \end{aligned}$	$\begin{aligned} & .93 " \\ & (23.6) \end{aligned}$
1/2-14	1	$\begin{aligned} & .88 " \\ & (22.4) \end{aligned}$	$\begin{aligned} & \hline .90 " \\ & (22.9) \end{aligned}$	$\begin{aligned} & .46^{\prime \prime} \\ & (11.7) \end{aligned}$	$\begin{aligned} & .44^{\prime \prime} \\ & (11.2) \end{aligned}$	$\begin{aligned} & \hline 1.00 " \\ & (25.4) \end{aligned}$	$\begin{aligned} & .88 " \\ & .(22.4) \end{aligned}$	$\begin{aligned} & 1.00 " \\ & (25.4) \end{aligned}$	$\begin{aligned} & 1.10 " \\ & (27.9) \end{aligned}$	$\begin{aligned} & .46 " \\ & (11.7) \end{aligned}$	$\begin{aligned} & \hline .45^{\prime \prime} \\ & (11.4) \\ & \hline \end{aligned}$	$\begin{aligned} & 1.00 " 1 \\ & (25.4) \end{aligned}$	$\begin{aligned} & .93 " \\ & .(23.6) \end{aligned}$
1/2-14	2	$\begin{aligned} & 1.13 " 1 \\ & (28.7) \end{aligned}$	$\begin{aligned} & 1.10 " 1 \\ & (27.9) \end{aligned}$	$\begin{aligned} & .55^{\prime \prime} \\ & (14.0) \end{aligned}$	$\begin{aligned} & .64 " \\ & (16.3) \end{aligned}$	$\begin{aligned} & 1.11 " 1 \\ & (28.2) \end{aligned}$	$\begin{aligned} & 1.00 " \\ & (25.4) \end{aligned}$	$\begin{aligned} & 1.32 " 1 \\ & (33.5) \end{aligned}$	$\begin{aligned} & 1.50 " \\ & (38.1) \end{aligned}$	$\begin{aligned} & .53^{\prime \prime} \\ & (13.5) \end{aligned}$	$\begin{aligned} & .58 " \\ & (14.7) \end{aligned}$	$\begin{aligned} & 1.25 " \\ & (31.7) \end{aligned}$	$\begin{aligned} & 1.12^{\prime \prime} \\ & (28.4) \end{aligned}$
1/2-14	3	$\begin{aligned} & 1.38 " 1 \\ & (35.1) \end{aligned}$	$\begin{aligned} & 1.50 " \\ & (38.1) \end{aligned}$	$\begin{aligned} & .55 " \\ & (14.0) \end{aligned}$	$\begin{aligned} & .64 " \\ & (16.3) \end{aligned}$	$\begin{aligned} & 1.40 " \\ & (35.6) \end{aligned}$	$\begin{aligned} & 1.25 " \\ & (31.7) \end{aligned}$	-	-	-	-	-	-
$3 / 4-14$	2	$\begin{aligned} & \hline 1.13^{\prime \prime} \\ & (28.7) \end{aligned}$	$\begin{aligned} & \hline 1.10 " \\ & (27.9) \end{aligned}$	$\begin{aligned} & \hline .55 " \\ & (14.0) \end{aligned}$	$\begin{aligned} & .64 " \\ & (16.3) \end{aligned}$	$\begin{aligned} & \hline 1.29 " \\ & (32.8) \end{aligned}$	$\begin{aligned} & 1.13^{\prime \prime} \\ & (28.7) \end{aligned}$	-	-	-	-	-	-
$3 / 4-14$	3	$\begin{aligned} & 1.38 " 1 \\ & (35.1) \end{aligned}$	$\begin{aligned} & \hline 1.50 " \\ & (38.1) \end{aligned}$	$\begin{aligned} & \hline .55^{\prime \prime} \\ & (14.0) \end{aligned}$	$\begin{aligned} & .82 " \\ & (20.8) \end{aligned}$	$\begin{aligned} & 1.40 " 1 \\ & (35.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 1.25^{\prime \prime} \\ & (31.7) \end{aligned}$	$\begin{aligned} & \hline 1.56 " 1 \\ & (39.6) \end{aligned}$	$\begin{aligned} & \hline 1.60 " \\ & (40.6) \end{aligned}$	$\begin{aligned} & \hline .55 " \\ & (14.0) \end{aligned}$	$\begin{aligned} & \hline .77 " \\ & (19.6) \end{aligned}$	$\begin{aligned} & 1.44^{\prime \prime} \\ & (36.6) \end{aligned}$	$\begin{aligned} & 1.31^{\prime \prime} \\ & \text { (33.3) } \end{aligned}$
1-111/2	4	$\begin{aligned} & 1.75^{\prime \prime} \\ & (44.4) \\ & \hline \end{aligned}$	$\begin{aligned} & 1.60 " 1 \\ & (40.6) \\ & \hline \end{aligned}$	$\begin{aligned} & .711 \\ & (18.0) \\ & \hline \end{aligned}$	$\begin{aligned} & 1.02^{\prime \prime} \\ & (25.9) \\ & \hline \end{aligned}$	$\begin{aligned} & 1.81^{\prime \prime} \\ & (46.0) \\ & \hline \end{aligned}$	$\begin{aligned} & 1.62 " 1 \\ & (41.1) \\ & \hline \end{aligned}$	$\begin{aligned} & 1.88^{\prime \prime} \\ & (47.8) \\ & \hline \end{aligned}$	$\begin{aligned} & 1.75^{\prime \prime} \\ & (44.4 \end{aligned}$	$\begin{aligned} & .70 " \\ & (17.8) \end{aligned}$	$\begin{aligned} & 1.01 " \\ & (25.7) \end{aligned}$	$\begin{aligned} & 1.84^{\prime \prime} \\ & (46.7) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.63 " \\ & (41.4) \end{aligned}$
1-111/2	5	$\begin{aligned} & 2.31^{\prime \prime} \\ & (58.7) \end{aligned}$	$\begin{aligned} & 1.70 " \\ & (43.2) \end{aligned}$	$\begin{aligned} & .66 " \\ & (16.8) \end{aligned}$	$\begin{aligned} & 1.01 " \\ & (25.7) \end{aligned}$	$\begin{aligned} & 2.28 " 1 \\ & (57.9) \end{aligned}$	$\begin{aligned} & 2.00 " \\ & (50.8) \end{aligned}$	-	-	-	-	-	-
$11 / 4-111 / 2$	5	$\begin{aligned} & 2.31^{\prime \prime} \\ & (58.7) \end{aligned}$	$\begin{aligned} & 1.70 " \\ & (43.2) \end{aligned}$	$\begin{aligned} & .74 " \\ & \hline \text { (18.8) } \end{aligned}$	$\begin{aligned} & 1.26 " 1 \\ & (32.0) \end{aligned}$	$\begin{aligned} & 2.28^{\prime \prime} \\ & (57.9) \end{aligned}$	$\begin{aligned} & 2.12 " \\ & (53.8) \end{aligned}$	-	-	-	-	-	-
$11 / 2-111 / 2$	5	$\begin{aligned} & 2.31^{\prime \prime} \\ & (58.7) \end{aligned}$	$\begin{aligned} & 1.70 " \\ & (43.2) \end{aligned}$	$\begin{aligned} & .74 " \\ & (18.8) \end{aligned}$	$\begin{aligned} & 1.38 " 1 \\ & (35.1) \end{aligned}$	$\begin{aligned} & 2.28 " 1 \\ & (57.9) \end{aligned}$	$\begin{aligned} & 2.12^{\prime \prime} \\ & (53.8) \end{aligned}$	-	-	-	-	-	-
$11 / 2-111 / 2$	6	$\begin{aligned} & 3.00 " \\ & (76.2) \end{aligned}$	$\begin{aligned} & 2.20 " 1 \\ & (55.9) \end{aligned}$	$\begin{aligned} & .75^{\prime \prime} \\ & (19.0) \end{aligned}$	$\begin{aligned} & 1.50 " \\ & (38.1) \end{aligned}$	$\begin{aligned} & 2.97 " \\ & (75.4) \end{aligned}$	$\begin{aligned} & 2.75 " \\ & (69.8) \end{aligned}$	-	-	-	-	-	-
2-111/2	6	$\begin{aligned} & 3.00 " \\ & (76.2) \end{aligned}$	$\begin{aligned} & 2.20 " 1 \\ & (55.9) \end{aligned}$	$\begin{aligned} & .80 " \\ & (20.3) \end{aligned}$	$\begin{aligned} & 1.92^{\prime \prime} \\ & (48.8) \end{aligned}$	$\begin{aligned} & 3.24 " \\ & (82.4) \end{aligned}$	$\begin{aligned} & 3.00 " \\ & (76.2) \end{aligned}$	-	-	-	-	-	-
2-111/2	7	$\begin{aligned} & 3.85 " \\ & (97.8) \end{aligned}$	$\begin{aligned} & 2.70 " \\ & (68.6) \end{aligned}$	$\begin{aligned} & .88 " \\ & (22.4) \end{aligned}$	$\begin{aligned} & 1.94 " \\ & (49.3) \end{aligned}$	$\begin{aligned} & 4.05 " \\ & (102.9) \end{aligned}$	$\begin{aligned} & 3.75 " \\ & (95.2) \end{aligned}$	-	-	-	-	-	-
21/2-8	7	$\begin{aligned} & \hline 3.85 " \\ & (97.8) \end{aligned}$	$\begin{aligned} & 2.70 " \\ & (68.6) \end{aligned}$	$\begin{aligned} & 1.30 " 1 \\ & (33.0) \end{aligned}$	$\begin{aligned} & 2.32^{\prime \prime} \\ & (58.9) \end{aligned}$	$\begin{aligned} & 4.34^{\prime \prime} \\ & (110.2) \end{aligned}$	$\begin{aligned} & 4.02 " 1 \\ & (102.1) \end{aligned}$	-	-	-	-	-	-
$2^{1 / 2}-8$	8	$\begin{aligned} & 4.75 " \\ & (120.6) \end{aligned}$	$\begin{aligned} & \hline 2.70 " \\ & (68.6) \end{aligned}$	$\begin{aligned} & \hline 1.25 " \\ & (31.7) \end{aligned}$	$\begin{aligned} & \hline 2.38^{\prime \prime} \\ & (60.5) \end{aligned}$	$\begin{aligned} & 4.86 " \\ & (123.4) \end{aligned}$	$\begin{aligned} & 4.50 " \\ & (114.3) \end{aligned}$	-	-	-	-	-	-
3-8	7	$\begin{aligned} & \hline 3.85 " \\ & (97.8) \end{aligned}$	$\begin{aligned} & \hline 2.70 " \\ & (68.6) \end{aligned}$	$\begin{aligned} & 1.30 " 1 \\ & (33.0) \end{aligned}$	$\begin{aligned} & \hline 2.54 " 1 \\ & (64.5) \end{aligned}$	$\begin{aligned} & 4.34^{\prime \prime} \\ & (110.2) \end{aligned}$	$\begin{aligned} & 4.02 " 1 \\ & (102.1) \end{aligned}$	-	-	-	-	-	-
3-8	8	$\begin{aligned} & 4.50 " \\ & (114.3) \end{aligned}$	$\begin{aligned} & \hline 2.70 " \\ & (68.6) \end{aligned}$	$\begin{aligned} & \hline 1.38 " 1 \\ & (35.1) \end{aligned}$	$\begin{aligned} & \hline 3.00 " \\ & (76.2) \end{aligned}$	$\begin{aligned} & 4.86 " \\ & (123.4) \end{aligned}$	$\begin{aligned} & \hline 4.50 " \\ & (114.3) \end{aligned}$	-	-	-	-	-	-

Note: *A/C- Across Corners; A/F-Across Flats.

