HY-T® Plus (Classical) Belts Less elongation is the key to performance

Abstract

Whether you are talking about rubber belts or metal chains, most materials will elongate when put to use. The secret to reliable performance is not to eliminate elongation, but to control it so that it is minimal, predictable and uniform. To achieve these criteria, we developed the Vytacord ${ }^{\oplus}$ tensile member.

Part Number: B75

B
0.66 in. top width - Classical profile Approximate 75 in . inside length

Vytacord ${ }^{\circledR}$ provides the high-strength, high-horsepower rating capacity needed to effectively transmit today's drive power. It is even tough enough to tolerate slight sheave misalignment that would quickly destroy ordinary belts.

The Vytacord ${ }^{\circledR}$ tensile member provides dimensional stability. As a result, each belt of a given size will maintain its length consistency, no matter when or where it was produced.

The exceptional dimensional stability properties of HY-T® Plus eliminates matching problems, improves performance and increases service life.

Improved materials are the key to the durability and versatility of $\mathrm{HY}-{ }^{\oplus}$ Plus

 The vast improvements in all components of HY-T® Plus construction complement the quality of the Vytacord ${ }^{\circledR}$ tensile member.Our engineered heat- and oil-resistant rubber compound is used in both the cushion and insulation sections of $\mathrm{HY}-\boldsymbol{T}^{\oplus}$ Plus. Belt construction provides the flexibility on small pulleys. As a result the belt is able to serve a dual purpose for both Classical and FHP, while offering more versatility than any other Classical belt.

The HY-T® Plus envelope construction assures optimum warp and fill thread angle, providing belt flexibility. In addition, the fabric is treated with ContiTech exclusive engineered rubber compound for long wear and resistance to heat, oil and other environmental hazards. The envelope also assures that the belt dissipates static electricity, as specified in ARPM bulletin IP3-3.

The cushion is also crush-resistant and cool running to maintain its shape, fit and strength longer. And with the longer service
life achieved by HY-T® Plus belts, replacement of belts is less frequent. Overall, belt costs are reduced, downtime is minimized and equipment productivity is maintained.

Less inventory required

The HY-T® Plus can be used in FHP applications. Conversely, rarely do FHP belts perform in HY-T® Plus (Classical) applications.

The result is a reduced inventory that equates to dollars taken off the shelves and added to your pockets.

Applications

Designed for operating at high speeds over small diameter pulleys and short center distances. Also for use in multiple V-belt drives where high-shock load and heavy-duty loads are encountered.

Key features \& benefits

> Universal Classical profile.
> High-strength Vytacord ${ }^{\circledR}$ tensile members.
> Engineered rubber-impregnated envelope
> Engineered rubber compound cushion and insulation.
> Dual branded (Classical and FHP part numbers).
> Oil, heat, ozone and abrasion resistant.
> Matchmaker ${ }^{\oplus}$ to eliminate mismatch.
> Static conductive.*

To learn more, visit www.contitech.us.

[^0]
HY-T® Plus (Classical) Belts

Cross Sections and Lengths Available

A Section

Part \#	Approx. Outside Length (in.)	Part \#	Approx. Outside Length (in.)	Part \#	Approx. Outside Length (in.)
A20 (4L220)	22	A51 (4L530)	53	A82 (4L840)	84
A21 (4L230)	23	A52 (4L540)	54	A83 (4L850)	85
A22 (4L240)	24	A53 (4L550)	55	A84 (4L860)	86
A23 (4L250)	25	A54 (4L560)	56	A85 (4L870)	87
A24 (4L260)	26	A55 (4L570)	57	A86 (4L880)	88
A25 (4L270)	27	A56 (4L580)	58	A87 (4L890)	89
A26 (4L280)	28	A57 (4L590)	59	A88 (4L900)	90
A27 (4L290)	29	A58 (4L600)	60	A89 (4L910)	91
A28 (4L300)	30	A59 (4L610)	61	A90 (4L920)	92
A29 (4L310)	31	A60 (4L620)	62	A91 (4L930)	93
A30 (4L320)	32	A61 (4L630)	63	A92 (4L940)	94
A31 (4L330)	33	A62 (4L640)	64	A93 (4L950)	95
A32 (4L340)	34	A63 (4L650)	65	A94 (4L960)	96
A33 (4L350)	35	A64 (4L660)	66	A95 (4L970)	97
A34 (4L360)	36	A65 (4L670)	67	A96 (4L980)	98
A35 (4L370)	37	A66 (4L680)	68	A97 (4L990)	99
A36 (4L380)	38	A67 (4L690)	69	A98 (4L1000)	100
A37 (4L390)	39	A68 (4L700)	70	A100 (4L1020)	102
A38 (4L400)	40	A69 (4L710)	71	A103	105
A39 (4L410)	41	A70 (4L720)	72	A105	107
A40 (4L420)	42	A71 (4L730)	73	A110	112
A41 (4L430)	43	A72 (4L740)	74	A112	114
A42 (4L440)	44	A73 (4L750)	75	A120	122
A43 (4L450)	45	A74 (4L760)	76	A128	130
A44 (4L460)	45	A75 (4L770)	77	A133	135
A45 (4L470)	47	A76 (4L780)	78	A136	138
A46 (4L480)	48	A77 (4L790)	79	A144	146
A47 (4L490)	49	A78 (4L800)	80	A158	160
A48 (4L500)	50	A79 (4L810)	81	A173	175
A49 (4L510)	51	A80 (4L820)	82	A180	182
A50 (4L520)	52	A81 (4L830)	83		

A Section

B Section

Part \＃	Approx． Outside Length（in．）	Part \＃	Approx． Outside Length（in．）	Part \＃	Approx． Outside Length（in．）
B22（5L250）	25	B62（5L650）	65	B103	106
B23（5L260）	26	B63（5L660）	66	B104	107
B24（5L270）	27	B64（5L670）	67	B105	108
B25（5L280）	28	B65（5L680）	68	B108	111
B26（5L290）	29	B66（5L690）	69	B109	112
B27（5L300）	30	B67（5L700）	70	B111	114
B28（5L310）	31	B68（5L710）	71	B112	115
B29（5L320）	32	B69（5L720）	72	B115	118
B30（5L330）	33	B70（5L730）	73	B116	119
B31（5L340）	34	B71（5L740）	74	B118	121
B32（5L350）	35	B72（5L750）	75	B120	123
B33（5L360）	36	B73（5L760）	76	B124	127
B34（5L370）	37	B74（5L770）	77	B126	129
B35（5L380）	38	B75（5L780）	78	B128	131
B36（5L390）	39	B76（5L790）	79	B133	136
B37（5L400）	40	B77（5L800）	80	B136	139
B38（5L410）	41	B78（5L810）	81	B140	143
B39（5L420）	42	B79（5L820）	82	B144	147
B40（5L430）	43	B80（5L830）	83	B148	151
B41（5L440）	44	B81（5L840）	84	B150	153
B42（5L450）	45	B82（5L850）	85	B154	157
B43（5L460）	46	B83（5L860）	86	B158	161
B44（5L470）	47	B84（5L870）	87	B162	165
B45（5L480）	48	B85（5L880）	88	B173	176
B46（5L490）	49	B86（5L890）	89	B180	183
B47（5L500）	50	B87（5L900）	90	B190	193
B48（5L510）	51	B88（5L910）	91	B195	198
B49（5L520）	52	B89（5L920）	92	B205	208
B50（5L530）	53	B90（5L930）	93	B210	213
B51（5L540）	54	B91（5L940）	94	B225	227
B52（5L550）	55	B92（5L950）	95	B240	242
B53（5L560）	56	B93（5L960）	96	B255	257
B54（5L570）	57	B94（5L970）	97	B270	272
B55（5L580）	58	B95（5L980）	98	B285	287
B56（5L590）	59	B96（5L990）	99	B300	302
B57（5L600）	60	B97（5L1000）	100	B315	317
B58（5L610）	61	B98（5L1010）	101	B330	332
B59（5L620）	62	B99（5L1020）	102	B360	362
B60（5L630）	63	B100	103	B394	396
B61（5L640）	64	B101	104		

[^0]: *Drive conditions and service variables in combination with time in operation can result in a loss of static conductivity. It is recommended that a conductivity check be added to drive preventive maintenance programs where belt static conductivity is a requirement

